By the aid of an atomic force microscope (AFM) and the colloid probe technique, the interaction forces between bovine serum albumin (BSA) layers adsorbed on different substrates (silica and polystyrene) have been measured directly as a function of pH and salt concentration. Electrostatic and steric forces dominate the interactions at low salt concentrations. At high salt concentrations, when electrostatic interactions are screened, a very strange behaviour is found as a function of pH. The behaviour around the i.e.p. of the protein is also very striking: the interaction is attractive at low salt concentration, but it is repulsive at high salt concentration. These results could be explained if the presence of hydration forces is assumed. Theoretical predictions including a hydration term in the DLVO theory fit the experimental results satisfactorily.