Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Preparation and incorporation of microcapsules in functional coatings for self-healing of packaging board
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
Show others and affiliations
2009 (English)In: Packaging technology & science, ISSN 0894-3214, E-ISSN 1099-1522, Vol. 22, no 5, p. 275-291Article in journal (Refereed)
Abstract [en]

The replacement of flexible polyolefin barrier layers with novel, thin, functional polymer coatings in the production of paperboard packaging involves the risk of deteriorated barrier and mechanical properties during the converting process. Local defects or cracks in the protective barrier layer can arise because of the stress induced in creasing and folding operations. In this study, the incorporation of microencapsulated self-healing agents in coating formulations applied both by spot- and uniform-coating techniques was studied. The preparation process of microcapsules with a hydrophobic core surrounded by a hydrophobically modified polysaccharide membrane in aqueous suspension was developed to obtain capsules fulfilling both the criteria of small capsule size and reasonably high solids content to match the requirements set on surface treatment of paperboard for enhancement of packaging functionality. The survival of the microcapsules during application and their effectiveness as self-healing agents were investigated. The results showed a reduced tendency for deteriorated barrier properties and local termination of cracks formed upon creasing. The self-healing mechanism involves the rupture of microcapsules local to the applied stress, with subsequent release of the core material. Crack propagation is hindered by plasticization of the underlying coating layer, while the increased hydrophobicity helps to maintain the barrier properties.

Place, publisher, year, edition, pages
2009. Vol. 22, no 5, p. 275-291
Keywords [en]
Barrier properties, Creasing, Cutting, Microcapsules, Self-healing, Spot-coating
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-27363OAI: oai:DiVA.org:ri-27363DiVA, id: diva2:1054367
Note
A3543Available from: 2016-12-08 Created: 2016-12-08 Last updated: 2020-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
YKI – Ytkemiska institutet
In the same journal
Packaging technology & science
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 164 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf