Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Foaming of polypropylene glycols and glycol/MIBC mixtures
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
Show others and affiliations
2005 (English)In: Minerals Engineering, ISSN 0892-6875, E-ISSN 1872-9444, Vol. 18, p. 179-188Article in journal (Refereed)
Abstract [en]

The surface tension and foamability of a series of polypropylene glycols (PPG) with average molecular weights (MW) ranging from 200 to 2000 g mol-1 and hydrophilic-lipophilic balance (HLB) values ranging from 10.4 to 5.8 were compared to methyl isobutyl carbinol (MIBC), 4-methyl-2-pentanol (MW102 g mol-1 and HLB 6.1). Experiments were carried out using a modified Bikermann column in which the foam heights were determined at a range of gas flow rates and retention times were calculated at different foamer concentrations. These studies show the six-carbon polypropylene glycol (PPG400) with HLB value of 9.7 is an unusually strong frother. Since many industrial foamers/frothers commonly contain a mixture of chemical types, we have also studied the foaming behaviour of mixed systems of PPGs and MIBC at a range of concentrations. The foaming data indicated that a synergistic effect occurred for several of the mixed systems with differences in HLB values, which resulted in an increase in foam height compared to the performance of the individual systems. Dynamic surface tension measurements, determined in the short time span range of 0.1–10 s, correlated with the synergistic effect and it was found that the blended systems gave a higher dynamic surface tension gradient compared to the individual PPGs. It could be suggested that the mixed foamer (containing high HLB and low HLB value components) produce closed packed, molecular cohesive films at the air/solution interface giving greater surface elasticity, which appeared to increase foamability

Place, publisher, year, edition, pages
2005. Vol. 18, p. 179-188
Keywords [en]
Flotation froths, flotation reagents, flotation bubbles
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-27321OAI: oai:DiVA.org:ri-27321DiVA, id: diva2:1054325
Note
A1684Available from: 2016-12-08 Created: 2016-12-08 Last updated: 2020-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
YKI – Ytkemiska institutet
In the same journal
Minerals Engineering
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 39 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf