In this paper we present a theoretical model which describes the kinetics of adsorption and desorption from a micellar solution of nonionic surfactants at a silica surface. Numerical calculations based on this model have been compared with experimental results of CnEm surfactant adsorption, obtained by ellipsometry, and show good agreement. The aim of this work was to develop a model for adsorption through a stagnant layer onto a solid, hydrophilic surface. The surface is considered to be planar and homogeneous. Outside the surface there is a micellar solution of a pure nonionic surfactant. Both monomers and micelles are considered to be able to adsorb. To facilitate the evaluation of the model, a computer program was written which solves the mathematical equations numerically. The course of adsorption and desorption of a number of short-chain CnEm surfactants has been simulated with this program. The results obtained, in terms of amounts adsorbed as a function of time, were compared with experimental data determined by time-resolved null ellipsometry. The same program was used to calculate concentration profiles outside the silica surface. Not only has this model made it possible for us to explain and better understand experimental results, but it has also allowed us to gain an understanding of how the course of adsorption and desorption is affected by parameters which are difficult to vary experimentally in a controlled way. Two examples of this, which will be discussed in this paper, are the effects of stagnant layer thickness and the relation between critical surface aggregation concentration (csac) and critical micelle concentration (cmc).