Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Atomic force microscopy measurements of adsorbed polyelectrolyte layers 2: Effect of composition & substrate on structure, forces and friction
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
2003 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 19, p. 4180-4187Article in journal (Refereed)
Abstract [en]

An investigation on the effect of the conformation of preadsorbed polyelectrolyte layers of acrylamide-1% [3-(2-methylpropionamide)propyl]trimethylammonium chloride on the normal and lateral interactions between surfaces has been conducted. It was shown that when bridging mechanisms increased the adhesion, huge increases in the friction were also seen. When the polymer adsorbed in an extended layer, it resulted in a steric repulsion in the direction normal to the interface. However, the resulting friction measurements were shown to be far more complicated. For example, in cases where the integrity of the polymer layer was maintained under compression, the layer was able to act as a lubricant; however when the layer integrity was affected by the load and shear rate, then friction increased due to energy losses resulting from disrupting the polymer conformation. The conformation was controlled by varying both the polymer charge density and the nature of the surface. The interaction between the polyelectrolyte and gold proved to be significantly stronger than that with silica, rendering the polymer layer more resistant to damage under shear and, consequently, a significantly different friction-load relationship. The dynamics of the interactions were also investigated and were highly dependent on the polyelectrolyte-surface interaction. As an aside, a novel observation of interference effects between cantilever and substrate is also made

Place, publisher, year, edition, pages
2003. Vol. 19, p. 4180-4187
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-27184OAI: oai:DiVA.org:ri-27184DiVA, id: diva2:1054188
Note
A1581Available from: 2016-12-08 Created: 2016-12-08 Last updated: 2020-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
YKI – Ytkemiska institutet
In the same journal
Langmuir
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 52 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf