System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effects of temperature, salt, and deuterium oxide on the self-aggregation of alkylglycosides in dilute solution. 1. n-Nonyl-β-D-Glucoside
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
Show others and affiliations
2004 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 20, p. 1401-1408Article in journal (Refereed) Published
Abstract [en]

The influence of salt, temperature, and deuterium oxide on the self-aggregation of n-nonyl--D-glucoside (-C9G1) in dilute solution has been investigated by static and dynamic light scattering, neutron scattering, and tensiometry. Scattering data show that the micelles can be described as relatively stiff, elongated structures with a circular cross section. With a decrease of temperature, the micelles grow in one dimension, which makes it surprising that the critical micelle concentration (cmc) shows a concomitant increase. On the other hand, substitution of D2O for H2O causes a large increase in micelle size at low temperatures, without any appreciable effect on cmc. With increasing temperature, the deuterium effect on the micelle size diminishes. The effects of salt on the micelle size and cmc were found to follow the Hofmeister series. Thus, at constant salt concentration, the micelle size decreased according to the sequence SO42- > Cl- > Br- > NO3- > I- > SCN-, whereas the effect on cmc displays the opposite trend. Here, I- and SCN- are salting-in anions. Similarly, the effects of cations decrease with increasing polarizability in the sequence Li+ > Na+ > K+ > Cs+. At high ionic strength, the systems separate into two micellar phases. The results imply that the size of -C9G1 micelles is extremely sensitive to changes in the headgroup size. More specifically, temperature and salt effects on effective headgroup size, including intermolecular interactions and water of hydration, are suggested to be more decisive for the micelle morphology than the corresponding effects on unimer solubility.

Place, publisher, year, edition, pages
2004. Vol. 20, p. 1401-1408
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-27173OAI: oai:DiVA.org:ri-27173DiVA, id: diva2:1054177
Note

A1648

Available from: 2016-12-08 Created: 2016-12-08 Last updated: 2024-05-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
YKI – Ytkemiska institutet
In the same journal
Langmuir
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 50 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf