Planned maintenance
A system upgrade is planned for 24/9-2024, at 12:00-14:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Adsorption properties of polyelectrolyte-surfactant complexes on hydrophobic surfaces studied by QCM-D
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
2006 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 22, p. 7639-7645Article in journal (Refereed)
Abstract [en]

Adsorption and deposition from turbid solutions are common in many industrial processes but notoriously difficult to investigate using standard optical techniques such as ellipsometry and reflectometry. In this report, we have addressed this problem by employing a quartz crystal microbalance with dissipation monitoring ability, QCM-D. The system under investigation consisted of a cationic polyelectrolyte, poly(vinylamine), PVAm, and an anionic surfactant, sodium dodecyl sulfate, SDS, which were mixed together in 10 mM NaCl solution. The polyelectrolyte and the surfactant readily associate in bulk solution, resulting in increased solution turbidity once large aggregates are formed. The solutions were placed in contact with a polystyrene surface, and the adsorption process was monitored by following the changes in the resonance frequency and dissipation factor. The results obtained can in most cases be evaluated using the Sauerbrey relation, but in some cases a more elaborate analysis is necessary. It is found that PVAm adsorbs to polystyrene in the absence of SDS. In the turbid region, deposition is observed, and the sensed mass exceeds the sum of that obtained for each of the components alone. On the other hand, at high SDS concentrations, the surfactant dominates in the adsorbed layer. Adsorption equilibrium is in most cases established within 1-2 h, the exception being found around the solution composition that results in the formation of charge-neutralized aggregates. In this case, a slow deposition of aggregates persists over prolonged times.

Place, publisher, year, edition, pages
2006. Vol. 22, p. 7639-7645
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-27157OAI: oai:DiVA.org:ri-27157DiVA, id: diva2:1054161
Note
A1849Available from: 2016-12-08 Created: 2016-12-08 Last updated: 2020-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
YKI – Ytkemiska institutet
In the same journal
Langmuir
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 24 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf