Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of capillary condensation on friction force and adhesion
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
Show others and affiliations
2007 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 23, no 2, p. 517-522Article in journal (Refereed)
Abstract [en]

Friction force measurements have been conducted with a colloid probe on mica and silica (both hydrophilic and hydrophobised) after long (24 hour) exposure to high humidity air. Adhesion and friction measurements have also been performed on cellulose substrates. The long exposure to high humidity led to a large hysteresis between loading and unloading in the friction measurements with separation occurring at large negative applied loads. The large hysteresis in the friction-load relationship is attributed to a contact area hysteresis of the capillary condensate which built up during loading and did not evaporate during the unloading regime. The magnitude of the friction force varied dramatically between substrates and was lowest on the mica substrate and highest on the hydrophilic silica substrate with the hydrophobised silica and cellulose being intermediate. The adhesion due to capillary forces on cellulose was small compared to that on the other substrates, due to the greater roughness of these surfaces.

Place, publisher, year, edition, pages
2007. Vol. 23, no 2, p. 517-522
Keywords [en]
Friction, capillary condensation, cellulose, mica, silica, atomic force microscopy, AFM, surface force, adhesion, paper, humidity, colloid probe, nanotribology.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-27138OAI: oai:DiVA.org:ri-27138DiVA, id: diva2:1054142
Note
A1795Available from: 2016-12-08 Created: 2016-12-08 Last updated: 2020-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
YKI – Ytkemiska institutet
In the same journal
Langmuir
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 51 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf