Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of surface topography on adhesive and long-range capillary forces between hydrophobic surfaces in water
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
RISE, STFI-Packforsk.
Show others and affiliations
2009 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 25, no 16, 9197-9207 p.Article in journal (Refereed) Published
Abstract [en]

We report on the interactions between a hydrophobic probe particle and surfaces with nanoscopic surface features. These surfaces have been prepared by spin-coating of nanoparticles and by polishing. The surface topography was characterized by AFM, using the methods of high-resolution imaging, low-resolution imaging using the probe particle, and by the rolling ball method. The spin-coated surfaces can be characterized as nanostructured due to the high density of nanoparticles that on a short length scale provides a regular pattern of crevices and hills. On these surfaces a larger waviness is also distinguished. In contrast, the polished surfaces display sharp nanoscopic peaks and hardly any crevices. In all cases the dominant force at short separations was found to be a capillary attraction due to the formation of an air/ vapor condensate. Our data show that the large-scale waviness of the surface does not significantly influence the range and magnitude of the capillary attraction, but large local variations in these quantities are found. The large variation in adhesion force corresponds to a small variation in local contact angle of the capillary condensate at the surfaces. The report discusses how the nature of the surface topographical features influences the capillary attraction by influencing the local contact angle and by pinning of the three-phase contact line. The effect is clearly dependent on whether the surface features exist in the form of crevices or as extending ridges.

Place, publisher, year, edition, pages
2009. Vol. 25, no 16, 9197-9207 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-27120DOI: 10.1021/la900759eOAI: oai:DiVA.org:ri-27120DiVA: diva2:1054124
Note

A2013

Available from: 2016-12-08 Created: 2016-12-08 Last updated: 2017-06-02Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
YKI – Ytkemiska institutetSTFI-Packforsk
In the same journal
Langmuir
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.26.0