Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A comparison between lipase-catalyzed esterification of oleic acid with glycerol in monolayer and microemulsion systems
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
1994 (English)In: Journal of the American Oil Chemists Society, ISSN 0003-021X, E-ISSN 1558-9331, Vol. 71, p. 1405-1409Article in journal (Refereed)
Abstract [en]

In the present paper lipase catalyzed synthesis - esterification of oleic acid with glycerol - i8 carried out in L2 microemulsions and in monolayers. The microemulsions were based on isooctane as nonpolar component and various water-glycerol mixtures as polar component. The substrate, oleic acid/sodium oleate, constituted the microemulsion surfactant. The lipase is known to reside mainly in the water pools. Monolayers of oleic acid/sodium oleate were formed on subsolutions of glycerol and water and the enzyme solution was injected under the compressed monolayers. Thus, the arrangement of the reactants at the oil-water interface of the microemulsion can be regarded as analogous to that at the air-water interface of the monolayer. The microemulsion structure was characterized by self-diffusion NMR. It was found that the higher the glycerol to water ratio, the lower are the water D-values. The reactions in microemulsions generally gave a low degree of oleic acid conversion. The yield increased with increasing glycerol to water ratio. Monoglycerides were the main product and no triglyceride could be detected. The monolayer experiments gave a somewhat higher degree of conversion with tri- and diglycerides being the major reaction products. The reason why triglycerides are formed in monolayer experiments but not in microemulsions is believed to be due to an unfavourable partitioning of the diglyceride in the microemulsion systems. Once formed, the diglyceride will partition into the hydrocarbon domain and become inaccessible for reaction with the enzyme-O-acyl intermediate at the oil-water interface. In addition, the interfaces in the two systems are very different. The monolayer interface is static, whereas the microemulsion interface is highly dynamic, and this difference may also influence the product pattern.

Place, publisher, year, edition, pages
1994. Vol. 71, p. 1405-1409
Keywords [en]
Enzymatic esterification, glycerol, lipase, microemulsion, monoglyceride, monolayer, oleic acid, self-diffusion coefficient, sodium oleate, spin-echo NMR, triglyceride
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-26996OAI: oai:DiVA.org:ri-26996DiVA, id: diva2:1053999
Note
A879Available from: 2016-12-08 Created: 2016-12-08 Last updated: 2020-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
YKI – Ytkemiska institutet
In the same journal
Journal of the American Oil Chemists Society
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 61 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf