Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A small-angle x-ray scattering study of complexes formed in mixtures of a cationic polyelectrolyte and an anionic surfactant
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
Show others and affiliations
2002 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 106, p. 11412-11419Article in journal (Refereed)
Abstract [en]

The internal structure of the solid phase formed in mixtures of the anionic surfactant sodium dodecyl sulfate (SDS) and a range of oppositely charged polyelectrolytes with different side chains and charge density has been investigated using small-angle X-ray scattering. Polyelectrolytes with short side chains [3-(2-methylpropionamido)propyl]trimethylammonium chloride, MAPTAC, and poly{[(2-propionyloxy)ethyl]trimethylammonium chloride}, PCMA) form a 2-dimensional hexagonal structure with SDS, whereas a polyelectrolyte without side chains (poly(vinlyamine), PVAm) forms a lamellar structure. The hexagonal structure of MAPTAC is retained either when a neutral monomer (acrylamide, AM) is included in the polymer backbone to reduce the charge density or when a nonionic surfactant is admixed to the SDS/polyelctrolyte complex. The unit cell length of AM-MAPTAC increases with decreasing charge density from a = 47.7 Å (MAPTAC, 100% charge density) to 58.5 Å (AM-MAPTAC, 30% charge density). The unit cell length in the lamellar SDS/PVAm complex (a = 36.1 Å) is significantly smaller than for the different hexagonal structures. It is conjectured that the cylinders in the hexagonal structure and the bilayers in the lamellar structure are based on self-assembled surfactant aggregates with the polyelectrolyte mainly located in the aqueous region adjacent to the charged surfactant headgroups

Place, publisher, year, edition, pages
2002. Vol. 106, p. 11412-11419
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-26939OAI: oai:DiVA.org:ri-26939DiVA, id: diva2:1053942
Note
A1593Available from: 2016-12-08 Created: 2016-12-08 Last updated: 2020-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
YKI – Ytkemiska institutet
In the same journal
Journal of Physical Chemistry B
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 38 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf