Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dynamics of capillary rise
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
2000 (English)In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 228, p. 263-269Article in journal (Refereed)
Abstract [en]

An overview and detailed analysis of the classical theory of capillarity is presented. A number of known equations of capillary rise dynamics are shown to be different limiting cases of one rather general equation. Some internal inconsistencies of the classical equations are pointed out. The role of non-linear dissipation and flow pattern effects in the front zone of the liquid column and near the capillary entrance is discussed. Numerical simulations and experimental data demonstrating some characteristic types of dynamic behavior predicted by the theory are reported. A special attention is paid to the capillary rise of surfactant solutions. As applied to this special case, the existing theory is substantially elaborated by setting up a closed system of equations describing the surfactant transport and relaxation processes in the adsorption layer. A simplified relation for the capillary rise dynamics in the case of strong depletion of the interfacial region is obtained, which is in qualitative agreement with the experimental behavior.

Place, publisher, year, edition, pages
2000. Vol. 228, p. 263-269
Keywords [en]
Capillarity, Lucas-Washburn equation, surfactants
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-26709OAI: oai:DiVA.org:ri-26709DiVA, id: diva2:1053712
Note
A1319Available from: 2016-12-08 Created: 2016-12-08 Last updated: 2020-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
YKI – Ytkemiska institutet
In the same journal
Journal of Colloid and Interface Science
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 75 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf