Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spreading of individual toner particles studied using in situ optical microscopy
YKI – Ytkemiska institutet.
2005 (English)In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 287, p. 249-260Article in journal (Refereed)
Abstract [en]

This study develops and tests an experimental method to monitor in situ the dynamic spreading of individual toner particles on model substrates during heating, to simulate on laboratory scale the fusing sub-processes occurring in electrophotographic printing of paper. Real toner particles of cyan, magenta, yellow and black are transformed to perfect spheres by a temperature pre-treatment, then applied to the substrate, either high-energy clean glass or low-energy hydrophobised glass, and heated at rates up to 50 •C/min. The subsequent spreading as a function of time (and temperature) is recorded by an optical microscope and CCD camera mounted above the substrate, with the measured drop covering area used to calculate the corresponding toner–substrate–air contact angle. On the hydrophobic substrate the spreading is limited and equal for all four colours, while the substantially greater spreading on the hydrophilic substrate is accompanied by significant differences between the toner colours. In particular, the cyan and black toners are found to spread to almost twice the extent of the yellow particles. The dynamic spreading behaviour is interpreted in terms of complementary measurements of substrate and toner surface energy components and bulk toner rheology, and a simple empirical relation is proposed that fits very well the measurements for all toner and substrate types tested. In particular, the spreading relation is found to be determined only by the toner surface energy and its equilibrium contact angle, with no explicit dependence on toner viscosity

Place, publisher, year, edition, pages
2005. Vol. 287, p. 249-260
Keyword [en]
Electrophotography, toner, wetting, spreading
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-26678OAI: oai:DiVA.org:ri-26678DiVA, id: diva2:1053681
Note
A1722Available from: 2016-12-08 Created: 2016-12-08 Last updated: 2017-11-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
YKI – Ytkemiska institutet
In the same journal
Journal of Colloid and Interface Science
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 7 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.33.0