The relation between the suspension state and the rheological properties, the consolidation, and packing of a very fine (nanosized) BaTiO3 powder has been investigated. The BaTiO3 powder was suspended in a non-aqueous medium by adsorbing fatty acids and a polymeric dispersant, poly(12-hydroxy stearic acid), (PHS), at the BaTiO3/decane interface. Calculated interparticle energies implies that the suspension with PHS adsorbed is colloidally stable while the suspensions with oleic and octanoic acid can be characterised as weakly and strongly flocculated, respectively. Analysis of settling experiments and rheological measurements at high concentrations confirmed this characteristics. Pressure filtration resulted in nearly identical green body densities in spite of the differences in colloidal properties, but the preliminary sintering experiments and microstructural characterisation showed that the strongly flocculated suspension displays a significantly retarded sinterability compared to the colloidally stable and the weakly flocculated suspensions. The absence of a correlation between green density and sintering behavior was explained by considering both the volume taken by the adsorbed fatty acids and the PHS polymer-which can be substantial for nanosized powders- and the state of the suspension. While a decrease in the thickness of adsorbed surfactant or polymer layer will enable a higher particle packing density, such a thin adsorbed layer result in a more strongly flocculated suspension which will resist dense packing. Hence, it is suggested that the green bodies of the colloidally stable and the weakly flocculated suspensions correspond to a relatively homogeneous, but loosely packed, green body microstructure. The strongly flocculated suspension results in a green body with a more inhomogeneous microstructure.