Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Surface composition of spray-dried milk protein-stabilised emulsions in relation to pre-heat treatment of proteins
YKI – Ytkemiska institutet.
YKI – Ytkemiska institutet.
YKI – Ytkemiska institutet.
2001 (English)In: Colloids and Surfaces B: Biointerfaces, ISSN 0927-7765, E-ISSN 1873-4367, Vol. 21, 47-58 p.Article in journal (Refereed)
Abstract [en]

Several important technical properties of spray-dried food powders depend on particle-liquid interactions (e.g. wettability, dispersability) and particle-particle interactions (e.g. flowability). It can be assumed that the chemical composition of the surface layer of the particles to a large extent determine these properties. The present study has been aimed to investigate the relation between the surface composition of spray-dried milk protein-stabilised emulsions and pre-heat treatment of the proteins. Solutions of WPC were heat-treated at low (60-90°C) and high (140°C) temperature and the degree of denaturation was determined, prior to the preparation of emulsions with rapeseed oil. The surface composition of the dry powders were established by using ESCA (electron spectroscopy of chemical analysis).The emulsions were characterised by droplet size distribution before spray drying and after dissolution of the powders. Also free fat extractions and estimations of wettability (dissolution rates) were performed. The powder surface coverage of protein decreased with increasing degree of protein denaturation before the emulsification, whereas the emulsion droplet size increased both before spray drying and after reconstitution of powders. The free fat extraction as well as the dissolution rate, whereof the latter decreased with increasing surface fat coverage, correlated well with the fat coverage of the powder surface.

Place, publisher, year, edition, pages
2001. Vol. 21, 47-58 p.
Keyword [en]
ESCA, spray-drying, powder, surface composition, whey protein
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-26487OAI: oai:DiVA.org:ri-26487DiVA: diva2:1053489
Note
A1433Available from: 2016-12-08 Created: 2016-12-08Bibliographically approved

Open Access in DiVA

No full text

By organisation
YKI – Ytkemiska institutet
In the same journal
Colloids and Surfaces B: Biointerfaces
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

Total: 4 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.26.0