Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Microemulsions as reaction medium for surfactant synthesis
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
1997 (English)In: Colloids and Surfaces A: Physicochemical and Engineering Aspects, ISSN 0927-7757, E-ISSN 1873-4359, Vol. 128, p. 265-271Article in journal (Refereed)
Abstract [en]

Various microemulsion formulations were evaluated as reaction medium for synthesis of a surface active compound, decyl sulfonate, from decyl bromide and sodium sulfite. The reaction rate was fast both in water-in-oil and in bicontinuous microemulsions based on nonionic surfactant. Two-phase systems with added phase transfer agent (quaternary ammonium salt or crown ether) was much less efficient. It is postulated that the low efficiency of the phase transfer agents in catalyzing the reaction is caused by strong ion pair formation between the product formed, decyl sulfonate, and the phase transfer agent. To prove this point decyl bromide was reacted with two other nucleophiles, sodium cyanide and sodium azide. Neither of these give a reaction product that can form ion pair with the phase transfer agent. With these reagents phase transfer catalysis was almost as efficient as synthesis in microemulsion. It was also demonstrated that the rate of decyl sulfonate formation in microemulsion can be increased further by addition of a small amount of cationic surfactant. The choice of surfactant counterion is decisive of the effect on reaction rate, however. Whereas a small non-polarizable ion, such as acetate, gives a considerable reaction rate increase, a large polarizable ion, such as bromide, slows down the reaction. Bromide is believed to interact so strongly with the interface that it prevents the reacting ion, sodium sulfite to reach into the interfacial zone.

Place, publisher, year, edition, pages
1997. Vol. 128, p. 265-271
Keywords [en]
Alkyl azide, alkyl nitrile, alkyl sulfonate, catalysis, crown ether, microemulsions, phase transfer agent, quaternary ammonium, reaction rate, surfactant
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-26459OAI: oai:DiVA.org:ri-26459DiVA, id: diva2:1053461
Note
A1066Available from: 2016-12-08 Created: 2016-12-08 Last updated: 2020-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
YKI – Ytkemiska institutet
In the same journal
Colloids and Surfaces A: Physicochemical and Engineering Aspects
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 71 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf