Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Grafting with hydrophilic polymer chains to prepare protein-resistant surfaces
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
1997 (English)In: Colloids and Surfaces A: Physicochemical and Engineering Aspects, ISSN 0927-7757, E-ISSN 1873-4359, Vol. 123-124, p. 297-306Article in journal (Refereed)
Abstract [en]

Different ways of grafting poly(ethylene glycol) (PEG) chains to solid polyethylene were compared with respect to grafting density and efficiency in preventing fibrinogen adsorption. Covalent grafting of PEG was performed by attaching a nucleophilic PEG derivative to electrophilic surface groups or by binding electrophilic PEG to nucleophilic groups at the solid surface. Two adsorption procedures were also used. In the first of these an ethylene oxide - propylene oxide (EO-PO) block copolymer was adsorbed at unmodified, hydrophobic polyethylene. In the second procedure the surface was made carboxyl-functional by free radical grafting of tiglic acid and then exposed to a solution of a positively charged copolymer consisting of PEG chains grafted to poly(ethylene imine) (PEI). According to ESCA measurements, all four routes gave proper PEG grafting densities and the difference in the ratio of C–C–O carbon (from PEG) to C-C-C  carbon (from the underlying surface) was relatively small. There was a substantial difference in efficiency in fibrinogen rejection, however. Whereas surface modification with the PEG-PEI graft copolymer gave the lowest, treatment with the EO-PO block copolymer gave the highest amount of protein adsorption. The good effect of the PEG-PEI layer is believed to be related to the large entropy loss associated with protein adsorption on top of this copolymer which is known to be loosely bound in a loops-and-trains configuration. The limited effect of the EO-PO block copolymer may be due to the fact that this polymer is not entirely hydrophilic at the temperature used. Another contributing factor may be that the EO-PO block copolymer, unlike the PEG-PEI graft copolymer, is not irreversibly bound to the surface and may therefore be exchanged by fibrinogen.

Place, publisher, year, edition, pages
1997. Vol. 123-124, p. 297-306
Keywords [en]
Poly(ethylene glycol), radiation grafting, protein adsorption, protein rejection, fibrinogen
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-26457OAI: oai:DiVA.org:ri-26457DiVA, id: diva2:1053459
Note
A1059Available from: 2016-12-08 Created: 2016-12-08 Last updated: 2020-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
YKI – Ytkemiska institutet
In the same journal
Colloids and Surfaces A: Physicochemical and Engineering Aspects
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 70 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf