System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Polyhedral carbon nanofoams with minimum surface area partitions produced using silica nanofoams as templates
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
2010 (English)In: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 48, no 11, p. 3121-3130Article in journal (Refereed)
Abstract [en]

Polyhedral silica nanofoam (PNF-SiO2) analogues of dry soap froths with minimal surface area were used as templates for making polyhedral carbon nanofoams (PNF-C). Furfuryl alcohol or triblock copolymers were used as carbon sources. The volume of carbon precursor relative to the internal pore volume of PNF-SiO2's was systematically varied between 50% and 100% in order to investigate the effect of filling fraction on internal structure of the corresponding PNF-C's. Transmission electron microscopy, small-angle X-ray scattering and nitrogen physisorption were used to characterize the samples. To aid the interpretation of the experimental data, a model for X-ray scattering from spherical shells was used to approximate scattering from the polyhedral foam cells. PNF-C's cast from the PNF-SiO2's, displayed the characteristic Plateau borders of minimal surface area foams defining interconnected, slit-like pore systems at all filling fractions. At relatively high filling fractions, inverse foam structures were obtained with the slit-like pores systems interpenetrating aggregated, close-packed, relatively low density polyhedral carbon nanoparticles co-joined by carbon struts. At relatively low filling fractions, polyhedral carbon nanofoams with relatively thin, fused double-wall structures and interconnected polyhedral pore systems were obtained.

Place, publisher, year, edition, pages
2010. Vol. 48, no 11, p. 3121-3130
Keywords [en]
Polyhedral carbon nanofoams with minimum surface area partitions produced using silica nanofoams as templates
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-26337DOI: 10.1016/j.carbon.2010.04.049OAI: oai:DiVA.org:ri-26337DiVA, id: diva2:1053339
Note
A2057Available from: 2016-12-08 Created: 2016-12-08 Last updated: 2020-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text
By organisation
YKI – Ytkemiska institutet
In the same journal
Carbon
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf