Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Silica nanocasts of wood fibres: A study of cell wall accessibility and structure
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
Show others and affiliations
2004 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 5, p. 1097-1101Article in journal (Refereed)
Abstract [en]

The porosity and the available surface area of a lignocellulosic fiber can influence the accessibility and reactivity in derivatization and modification reactions because the porous cell-wall network determines the upper size limit for molecules that can penetrate and react with the interior of the wall. To obtain information concerning the accessibility of the porous cell wall of wood fibers, surfactant-templated sol-gel mineralization has been examined. Wood and kraft pulp samples of Norway spruce were impregnated with a silica sol-gel and subsequently heated (calcined) and transformed into structured mesoporous silica. Microscopy studies (environmental scanning electron microscopy, transmission electron microsopy, TEM) on the silica casts showed that the three-dimensional architecture of the wood and pulp fiber cell wall was revealed down to the nanometer level. Image analysis of TEM micrographs of silica fragments from the never-dried pulp revealed complete infiltration of the cell-wall voids and microcavities (mean pore width 4.7 ± 2 nm) by the sol-gel and the presence of cellulose fibrils with a width of 3.6 ± 1 nm. Cellulose fibrils of the same width as that shown by image analysis were also identified by nitrogen adsorption measurements of the pore size distribution in the replicas.

Place, publisher, year, edition, pages
2004. Vol. 5, p. 1097-1101
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-26322OAI: oai:DiVA.org:ri-26322DiVA, id: diva2:1053324
Note
A1802Available from: 2016-12-08 Created: 2016-12-08 Last updated: 2020-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
YKI – Ytkemiska institutet
In the same journal
Biomacromolecules
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 54 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf