Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Biosensing of arteriosclerotic nanoplaque formation and interaction with an HMG-CoA reductase inhibitor
Show others and affiliations
2002 (English)In: Acta Physiologica Scandinavica, ISSN 0001-6772, E-ISSN 1365-201X, Vol. 176, p. 131-146Article in journal (Refereed)
Abstract [en]

Proteoheparan sulphate can be adsorbed to a methylated silica surface in a monomolecular layer via its transmembrane hydrophobic protein core domain. As a result of electrostatic repulsion, its anionic glycosaminoglycan side chains are stretched out into the blood substitute solution, thereby representing one receptor site for specific lipoprotein binding through basic amino acid-rich residues within their apolipoproteins. The binding process was studied by ellipsometric techniques suggesting that high-density lipoprotein (HDL) has a high binding affinity and a protective effect on interfacial heparan sulphate proteoglycan layers with respect to low-density lipoprotein (LDL) and Ca2+ complexation. Low-density lipoprotein was found to deposit strongly at the proteoheparan sulphate-coated surface, particularly in the presence of Ca2+, apparently through complex formation 'proteoglycan-LDL-calcium'. This ternary complex build-up may be interpreted as arteriosclerotic nanoplaque formation on the molecular level responsible for the arteriosclerotic primary lesion. On the other hand, HDL bound to heparan sulphate proteoglycan protected against LDL deposition and completely suppressed calcification of the proteoglycan-lipoprotein complex. In addition, HDL was able to decelerate the ternary complex deposition. Therefore, HDL attached to its proteoglycan receptor sites is thought to raise a multidomain barrier, selection and control motif for transmembrane and paracellular lipoprotein uptake into the arterial wall. Although much remains unclear regarding the mechanism of lipoprotein depositions at proteoglycan-coated surfaces, it seems clear that the use of such systems offers possibilities for investigating lipoprotein deposition at a 'nanoscopic' level under close to physiological conditions. In particular, Ca2+-promoted LDL deposition and the protective effect of HDL even at high Ca2+ and LDL concentrations agree well with previous clinical observations regarding risk and beneficial factors for early stages of atherosclerosis. Considering this, the system was tested on its reliability in a biosensor application in order to unveil possible acute pleiotropic effects of the lipid lowering drug fluvastatin. The very low-density lipoprotein (VLDL)/intermediate-density lipoprotein (IDL)/LDL plasma fraction from a high risk patient with dyslipoproteinaemia and type 2 diabetes mellitus showed beginning arteriosclerotic nanoplaque formation already at a normal blood Ca2+ concentration, with a strong increase at higher Ca2+ concentrations. Fluvastatin, whether applied to the patient (one single 80 mg slow release matrix tablet) or acutely in the experiment (2.2 μmol L-1), markedly slowed down this process of ternary aggregational nanoplaque complexation at all Ca2+ concentrations used. This action resulted without any significant change in lipid concentrations of the patient. Furthermore, after ternary complex build-up, fluvastatin, similar to HDL, was able to reduce nanoplaque adsorption and size. These immediate effects of fluvastatin have to be taken into consideration while interpreting the clinical outcome of long-term studies.

Place, publisher, year, edition, pages
2002. Vol. 176, p. 131-146
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-26261OAI: oai:DiVA.org:ri-26261DiVA, id: diva2:1053263
Note
A1562Available from: 2016-12-08 Created: 2016-12-08 Last updated: 2020-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
YKI – Ytkemiska institutet
In the same journal
Acta Physiologica Scandinavica
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 336 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf