Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sustained frictional instabilities on nanodomed surfaces: Stick-slip amplitude coefficient
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor.
Show others and affiliations
2013 (English)In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 7, no 12, 10850-10862 p.Article in journal (Refereed)
Abstract [en]

Understanding the frictional properties of nanostructured surfaces is important because of their increasing application in modern miniaturized devices. In this work, lateral force microscopy was used to study the frictional properties between an AFM nanotip and surfaces bearing well-defined nanodomes comprising densely packed prolate spheroids, of diameters ranging from tens to hundreds of nanometers. Our results show that the average lateral force varied linearly with applied load, as described by Amontons' first law of friction, although no direct correlation between the sample topographic properties and their measured friction coefficients was identified. Furthermore, all the nanodomed textures exhibited pronounced oscillations in the shear traces, similar to the classic stick-slip behavior, under all the shear velocities and load regimes studied. That is, the nanotextured topography led to sustained frictional instabilities, effectively with no contact frictional sliding. The amplitude of the stick-slip oscillations, σf, was found to correlate with the topographic properties of the surfaces and scale linearly with the applied load. In line with the friction coefficient, we define the slope of this linear plot as the stick-slip amplitude coefficient (SSAC). We suggest that such stick-slip behaviors are characteristics of surfaces with nanotextures and that such local frictional instabilities have important implications to surface damage and wear. We thus propose that the shear characteristics of the nanodomed surfaces cannot be fully described by the framework of Amontons' laws of friction and that additional parameters (e.g., σf and SSAC) are required, when their friction, lubrication, and wear properties are important considerations in related nanodevices.

Place, publisher, year, edition, pages
2013. Vol. 7, no 12, 10850-10862 p.
Keyword [en]
Amontons' laws, friction, nanodomes, nanostructured surfaces, nanotextured surfaces, nanotribology, stick-slip
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-26231DOI: 10.1021/nn404276pOAI: oai:DiVA.org:ri-26231DiVA: diva2:1053233
Note
A3330Available from: 2016-12-08 Created: 2016-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
SP Kemi Material och Ytor
In the same journal
ACS Nano
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.26.0