Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Structural and nanomechanical properties of paperboard coatings studied by peak force tapping atomic force microscopy
YKI – Ytkemiska institutet.
Show others and affiliations
2012 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 4, no 10, 5534-5541 p.Article in journal (Refereed)
Abstract [en]

Paper coating formulations containing starch, latex, and clay were applied to paperboard and have been investigated by scanning electron microscopy and Peak Force tapping atomic force microscopy. A special focus has been on the measurement of the variation of the surface topography and surface material properties with a nanometer scaled spatial resolution. The effects of coating composition and drying conditions were investigated. It is concluded that the air-coating interface of the coating is dominated by close-packed latex particles embedded in a starch matrix and that the spatial distribution of the different components in the coating can be identified due to their variation in material properties. Drying the coating at an elevated temperature compared to room temperature changes the surface morphology and the surface material properties due to partial film formation of latex. However, it is evident that the chosen elevated drying temperature and exposure time is insufficient to ensure complete film formation of the latex which in an end application will be needed.

Place, publisher, year, edition, pages
2012. Vol. 4, no 10, 5534-5541 p.
Keyword [en]
Structural and nanomechanical properties of paperboard coatings studied by peak force tapping atomic force microscopy atomic force microscopy, coating, material properties, nanocomposites, paperboard, topography
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-26230DOI: 10.1021/am301439kOAI: oai:DiVA.org:ri-26230DiVA: diva2:1053232
Note
A3066Available from: 2016-12-08 Created: 2016-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
YKI – Ytkemiska institutet
In the same journal
ACS Applied Materials and Interfaces
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 4 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.27.0