Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of solvent quality and chain density on normal and frictional forces between electrostatically anchored thermoresponsive diblock copolymer layers
KTH Royal Institute of Technology,Stockholm, Sweden.
KTH Royal Institute of Technology,Stockholm, Sweden.
RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry, Materials and Surfaces. KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science.
University of Montreal, Montreal, Canada .
Show others and affiliations
2017 (English)In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 487, 88-96 p.Article in journal (Refereed) Published
Abstract [en]

Equilibration in adsorbing polymer systems can be very slow, leading to different physical properties at a given condition depending on the pathway that was used to reach this state. Here we explore this phenomenon using a diblock copolymer consisting of a cationic anchor block and a thermoresponsive block of poly(2-isopropyl-2-oxazoline), PIPOZ. We find that at a given temperature different polymer chain densities at the silica surface are achieved depending on the previous temperature history. We explore how this affects surface and friction forces between such layers using the atomic force microscope colloidal probe technique. The surface forces are purely repulsive at temperatures <40 °C. A local force minimum at short separation develops at 40 °C and a strong attraction due to capillary condensation of a polymer-rich phase is observed close to the bulk phase separation temperature. The friction forces decrease in the cooling stage due to rehydration of the PIPOZ chain. A consequence of the adsorption hysteresis is that the friction forces measured at 25 °C are significantly lower after exposure to a temperature of 40 °C than prior to heating, which is due to higher polymer chain density on the surface after heating.

Place, publisher, year, edition, pages
Academic Press, 2017. Vol. 487, 88-96 p.
Keyword [en]
adsorption hysteresis, boundary lubrication, friction, PIPOZ, Poly(2-isopropyl-2-oxazoline), surface forces, thermoresponsive polymer
National Category
Physical Chemistry Other Chemistry Topics
Identifiers
URN: urn:nbn:se:ri:diva-26181DOI: 10.1016/j.jcis.2016.10.021Scopus ID: 2-s2.0-84992378692OAI: oai:DiVA.org:ri-26181DiVA: diva2:1045291
Available from: 2016-11-08 Created: 2016-11-08 Last updated: 2017-04-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopusOpen access article on publishers website
By organisation
Chemistry, Materials and Surfaces
In the same journal
Journal of Colloid and Interface Science
Physical ChemistryOther Chemistry Topics

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 74 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.26.0