Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Incremental stream clustering for anomaly detection and classification.
RISE, Swedish ICT, SICS, Decisions, Networks and Analytics lab.ORCID iD: 0000-0001-8577-6745
RISE, Swedish ICT, SICS, Decisions, Networks and Analytics lab.ORCID iD: 0000-0002-7181-8411
2011 (English)Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
2011, 7. p. 100-107
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:ri:diva-23998OAI: oai:DiVA.org:ri-23998DiVA, id: diva2:1043077
Conference
Eleventh Scandinavian Conference on Artificial Intelligence, SCAI 2011
Projects
Anomaly detection
Note

In Kofod-Petersen A., Heintz F. and Langseth H. (eds): Eleventh Scandinavian Conference on Artificial Intelligence, SCAI 2011. IOS Press, 2011.

Available from: 2016-10-31 Created: 2016-10-31 Last updated: 2018-08-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Holst, AndersEkman, Jan

Search in DiVA

By author/editor
Holst, AndersEkman, Jan
By organisation
Decisions, Networks and Analytics lab
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.4