Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Distributed Optimization of P2P Media Delivery Overlays
RISE, Swedish ICT, SICS.ORCID iD: 0000-0002-2748-8929
2011 (English)Licentiate thesis, monograph (Other academic)
Abstract [en]

Media streaming over the Internet is becoming increasingly popular. Currently, most media is delivered using global content-delivery networks, providing a scalable and robust client-server model. However, content delivery infrastructures are expensive. One approach to reduce the cost of media delivery is to use peer-to-peer (P2P) overlay networks, where nodes share responsibility for delivering the media to one another. The main challenges in P2P media streaming using overlay networks include: (i) nodes should receive the stream with respect to certain timing constraints, (ii) the overlay should adapt to the changes in the network, e.g., varying bandwidth capacity and join/failure of nodes, (iii) nodes should be intentivized to contribute and share their resources, and (iv) nodes should be able to establish connectivity to the other nodes behind NATs. In this work, we meet these requirements by presenting P2P solutions for live media streaming, as well as proposing a distributed NAT traversal solution. First of all, we introduce a distributed market model to construct an approximately minimal height multiple-tree streaming overlay for content delivery, in gradienTv. In this system, we assume all the nodes are cooperative and execute the protocol. However, in reality, there may exist some opportunistic nodes, free-riders, that take advantage of the system, without contributing to content distribution. To overcome this problem, we extend our market model in Sepidar to be effective in deterring free-riders. However, gradienTv and Sepidar are tree-based solutions, which are fragile in high churn and failure scenarios. We present a solution to this problem in GLive that provides a more robust overlay by replacing the tree structure with a mesh. We show in simulation, that the mesh-based overlay outperforms the multiple-tree overlay. Moreover, we compare the performance of all our systems with the state-of-the-art NewCoolstreaming, and observe that they provide better playback continuity and lower playback latency than that of NewCoolstreaming under a variety of experimental scenarios. Although our distributed market model can be run against a random sample of nodes, we improve its convergence time by executing it against a sample of nodes taken from the Gradient overlay. The Gradient overlay organizes nodes in a topology using a local utility value at each node, such that nodes are ordered in descending utility values away from a core of the highest utility nodes. The evaluations show that the streaming overlays converge faster when our market model works on top of the Gradient overlay. We use a gossip-based peer sampling service in our streaming systems to provide each node with a small list of live nodes. However, in the Internet, where a high percentage of nodes are behind NATs, existing gossiping protocols break down. To solve this problem, we present Gozar, a NAT-friendly gossip-based peer sampling service that: (i) provides uniform random samples in the presence of NATs, and (ii) enables direct connectivity to sampled nodes using a fully distributed NAT traversal service. We compare Gozar with the state-of-the-art NAT-friendly gossip-based peer sampling service, Nylon, and show that only Gozar supports one-hop NAT traversal, and its overhead is roughly half of Nylon’s.

Place, publisher, year, edition, pages
2011, 7.
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:ri:diva-23989OAI: oai:DiVA.org:ri-23989DiVA, id: diva2:1043068
Projects
RESTAvailable from: 2016-10-31 Created: 2016-10-31 Last updated: 2020-12-01Bibliographically approved

Open Access in DiVA

fulltext(1682 kB)142 downloads
File information
File name FULLTEXT01.pdfFile size 1682 kBChecksum SHA-512
d07b6a959f5ca1195cb5e0a6081c07358ef456b130e38a10fdc660ac295d284f73eea3f6300c761a3e4e9a2efe4f2b157d450fb3722257671f1e8b2b51bfd95c
Type fulltextMimetype application/pdf

Authority records

Payberah, Amir

Search in DiVA

By author/editor
Payberah, Amir
By organisation
SICS
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 142 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 105 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf