Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Physics-Style Approach to Scalability of Distributed Systems
RISE, Swedish ICT, SICS.
2005 (English)In: Global Computing, Springer , 2005, 1, 266-272 p.Chapter in book (Refereed)
Abstract [en]

Is it possible to treat large scale distributed systems as physical systems? The importance of that question stems from the fact that the behavior of many P2P systems is very complex to analyze analytically, and simulation of scales of interest can be prohibitive. In Physics, however, one is accustomed to reasoning about large systems. The limit of very large systems may actually simplify the analysis. As a first example, we here analyze the effect of the density of populated nodes in an identifier space in a P2P system. We show that while the average path length is approximately given by a function of the number of populated nodes, there is a systematic effect which depends on the density. In other words, the dependence is both on the number of address nodes and the number of populated nodes, but only through their ratio. Interestingly, this effect is negative for finite densities, showing that an amount of randomness somewhat shortens average path length. This work is funded by the Swedish funding agency VINNOVA, PPC project and the European PEPITO and EVERGROW projects.

Place, publisher, year, edition, pages
Springer , 2005, 1. 266-272 p.
Series
Lecture Notes in Computer Science, 3267
National Category
Computer and Information Science
Identifiers
URN: urn:nbn:se:ri:diva-22324DOI: 10.1007/b103251ISBN: 978-3-540-24101-0 (print)OAI: oai:DiVA.org:ri-22324DiVA: diva2:1041869
Note

Post-Proceedings of the Global Computing 2004 Workshop (March 2004), Rovereto, Italy

Available from: 2016-10-31 Created: 2016-10-31 Last updated: 2017-08-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
SICS
Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 13 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.27.0