Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sandstone injectivity and salt stability of cellulose nanocrystals (CNC) dispersions: €”Premises for use of CNC in enhanced oil recovery
Show others and affiliations
2016 (English)In: Industrial crops and products (Print), ISSN 0926-6690, E-ISSN 1872-633X, Vol. 93, 152-160 p.Article in journal (Refereed) Published
Abstract [en]

Reservoir production is frequently supported by using flooding fluids, often seawater. The efficiency is affected by various factors, such as the wettability of the reservoir rock and the mobility ratio between reservoir oil and injected fluid phase. These factors again influence sweep efficiency, which is the fraction of the total reservoir oil volume in contact with injected fluid during oil recovery. Addition of nanoparticles can affect the sweep efficiency on a macroscopic level by increasing the volume of petroleum in contact with the flooding fluid. Presented here are core-flooding studies performed using cellulose nanocrystals (CNC) of different concentrations in low-saline water. The studies were performed to investigate the injectivity of CNC into a high-permeable sandstone core, and to observe the effects addition of electrolytes had on the rheological properties of a low concentration dispersion of CNC. Zeta- potential and shear viscosity of dilute dispersions containing CNC was investigated under increasing electrolyte concentration. The flooding experiments show that the CNC has good injectivity in sandstone for all concentrations used, and the viscosity measurements performed on the effluent prove that the particles are able to travel through the core. Being sufficiently small for injection into sandstone and showing good colloidal stability at low salinities, CNC particles have the premises necessary to function properly as a flooding additive for enhanced oil recovery (EOR) in sandstone reservoirs.

Place, publisher, year, edition, pages
2016. Vol. 93, 152-160 p.
National Category
Chemical Engineering
Identifiers
URN: urn:nbn:se:ri:diva-18919DOI: 10.1016/j.indcrop.2016.03.019Scopus ID: 2-s2.0-84962420520OAI: oai:DiVA.org:ri-18919DiVA: diva2:1040153
Note

cited By 0

Available from: 2016-10-26 Created: 2016-10-26 Last updated: 2016-10-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Syverud, Kristin
By organisation
PFI – Paper and Fiber Research Institute
In the same journal
Industrial crops and products (Print)
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 21 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.27.0