Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Elastic models coupling the cellulose nanofibril to the macroscopic film level
RISE, Innventia, PFI – Paper and Fiber Research Institute.ORCID iD: 0000-0002-6183-2017
2015 (English)In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 5, no 71, p. 58091-58099Article in journal (Refereed) Published
Abstract [en]

The mechanical behaviour of cellulose nanofibrils is typically characterized by casting thin films and performing tensile tests on strips cut from these films. When comparing the stiffness of different films, the stiffness of the nanofibrils is only qualitatively and indirectly compared. This study provides some schemes based on various models of fibre networks, or laminated films, which can be used to assess the inherent stiffness of the nanofibrils from the stiffness of the films. Films of cellulose nanofibrils from different raw materials were manufactured and the elastic properties were measured. The expressions relating the nanofibril stiffness and the film stiffness were compared for the presented models. A model based on classical laminate theory showed the best balance between simplicity and adequacy of the underlying assumptions among the presented models. Using this model, the contributing nanofibril stiffness was found to range from 20 to 27 GPa. The nanofibril stiffness was also calculated from mechanical properties of nanofibril films found in the literature and compared with measurements from independent test methods of nanofibril stiffness. All stiffness values were found to be comparable and within the same order of magnitude.

Place, publisher, year, edition, pages
2015. Vol. 5, no 71, p. 58091-58099
National Category
Nano Technology Other Materials Engineering
Identifiers
URN: urn:nbn:se:ri:diva-18936DOI: 10.1039/c5ra04016gScopus ID: 2-s2.0-84936970622OAI: oai:DiVA.org:ri-18936DiVA, id: diva2:1040137
Note

cited By 3

Available from: 2016-10-26 Created: 2016-10-26 Last updated: 2018-08-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Chinga-Carrasco, Gary

Search in DiVA

By author/editor
Chinga-Carrasco, Gary
By organisation
PFI – Paper and Fiber Research Institute
In the same journal
RSC Advances
Nano TechnologyOther Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 10 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.3