Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Surface Chemistry of Nanocellulose Fibers Directs Monocyte/Macrophage Response
RISE, Innventia.
RISE, Innventia.ORCID iD: 0000-0001-7979-9158
Show others and affiliations
2015 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 16, no 9, p. 2787-2795Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

The effect of surface functionalization of nanofibrillated cellulose (NFC) on monocyte/macrophage (MM) behavior is investigated to understand how the physicochemical properties of nanocelluloses influence the interactions of such materials with biological systems. Films of anionic (a-), cationic (c-), and unmodified (u-) NFC were synthesized and characterized in terms of surface charge. THP-1 monocytes were cultured on the surface of the films for 24 h in the presence and absence of lipopolysaccharide, and the cell response was evaluated in terms of cell adhesion, morphology, and secretion of TNF-α, IL-10, and IL-1ra. The results show that MMs cultured on carboxymethylated-NFC films (a-NFC) are activated toward a proinflammatory phenotype, whereas u-NFC promotes a mild activation of the studied cells. The presence of hydroxypropyltrimethylammonium groups on c-NFC, however, does not promote the activation of MMs, indicating that c-NFC closely behaves as an inert material in terms of MM activation. None of the materials is able to directly activate the MMs toward an anti-inflammatory response. These results may provide a foundation for the design of future NFC-based materials with the ability to control MM activation and may expand the use of NFC in biomedical applications.

Place, publisher, year, edition, pages
2015. Vol. 16, no 9, p. 2787-2795
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:ri:diva-753DOI: 10.1021/acs.biomac.5b00727Scopus ID: 2-s2.0-84941585193OAI: oai:DiVA.org:ri-753DiVA, id: diva2:1039749
Note

cited By 3

Available from: 2016-10-25 Created: 2016-08-03 Last updated: 2018-08-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Lindström, Tom

Search in DiVA

By author/editor
Lindström, Tom
By organisation
Innventia
In the same journal
Biomacromolecules
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 10 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.3