Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Micro- and meso-level residual stresses in glass-fiber/vinyl-ester composites
Aeronautical Research Institute of Sweden.
RISE, Swerea, Swerea SICOMP.
Luleå University of Technology.
2000 (English)In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 60, no 10, p. 2011-2028Article in journal (Refereed)
Abstract [en]

Residual stresses in glass-fiber composites were studied on the micro and meso scales by computational and experimental methods. Transmitted polarized light images of thin sections were compared with 3D finite-element solutions of a sample containing 1410 fibers. Calculated point-wise stresses were derived from a linear thermoelastic model with negligibly small numerical errors. Regions with calculated maximum compressive stresses showed good agreement with experimentally observed optical bands. A material with poor interfacial adhesion showed weaker optical effects indicating fiber/matrix debonding. On the basis of these results it seems likely that irreversible matrix deformation and debonding can take place in the curing phase. (C) 2000 Elsevier Science Ltd. All rights reserved.Residual stresses in glass-fiber composites were studied on the micro and meso scales by computational and experimental methods. Transmitted polarized light images of thin sections were compared with 3D finite-element solutions of a sample containing 1410 fibers. Calculated point-wise stresses were derived from a linear thermoelastic model with negligibly small numerical errors. Regions with calculated maximum compressive stresses showed good agreement with experimentally observed optical bands. A material with poor interfacial adhesion showed weaker optical effects indicating fiber/matrix debonding. On the basis of these results it seems likely that irreversible matrix deformation and debonding can take place in the curing phase.

Place, publisher, year, edition, pages
Elsevier Science Ltd, Exeter, United Kingdom , 2000. Vol. 60, no 10, p. 2011-2028
Keywords [en]
A. Polymer-matrix composites, B. Curing, B. Interface, C. Finite element analysis, C. Residual stresses
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:ri:diva-13231DOI: 10.1016/S0266-3538(00)00099-3OAI: oai:DiVA.org:ri-13231DiVA, id: diva2:973427
Available from: 2016-09-22 Created: 2016-09-22 Last updated: 2017-11-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttp://www.sciencedirect.com/science/article/pii/S0266353800000993
By organisation
Swerea SICOMP
In the same journal
Composites Science And Technology
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 54 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf