Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluation of the stress-strain properties in the thickness direction: Particularly for thin and strong papers
RISE, Innventia.
RISE, Innventia.
2012 (English)In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 27, no 2, p. 287-294Article in journal (Refereed) Published
Abstract [en]

The performance of the paper in a number of converting operations such as creasing, bending, printing, and plastic coating put great demands on the mechanical properties in the thickness direction of the material. The knowledge of strength, elastic- and plastic behavior in tension and compression in the thickness direction is needed for a comprehensive description of the performance of the material in these operations. In spite of its importance, very few publications deal with the evaluation of the entire tensile stress-strain curve of paper in the thickness direction. A likely reason for this is the intrinsic difficulty of testing a thin, uneven, porous, fibrous and compressible material such as paper with sufficient precision and testing time efficiency. The z-directional strength test is usually performed by fastening the paper by means of double-adhesive tape to metal platens. The platens are fastened in a testing machine and strained to break. The adhesion of the tape is the limiting factors for how strong papers that can be tested. The tape-based method also is expected to have a lower limit in grammage due to the penetration of the adhesive. The aim of the present publication was to show a procedure how to evaluate the entire stress-elongation curve in the z-direction of papers, using a lamination method for fastening the paper to the metal platens. From this curve the z-strength, z-modulus, z-strain at break, zenergy at break and z-fracture energy could be extracted. Such information is, so far, non-existing in the literature.

Place, publisher, year, edition, pages
2012. Vol. 27, no 2, p. 287-294
Keywords [en]
Delamination, Energy, Fracture, Stress-strain, Z-direction
National Category
Paper, Pulp and Fiber Technology
Identifiers
URN: urn:nbn:se:ri:diva-9736DOI: 10.3183/NPPRJ-2012-27-02-p287-294Scopus ID: 2-s2.0-84865210384OAI: oai:DiVA.org:ri-9736DiVA, id: diva2:968512
Available from: 2016-09-12 Created: 2016-09-12 Last updated: 2021-01-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus
By organisation
Innventia
In the same journal
Nordic Pulp & Paper Research Journal
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 129 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf