Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Nanocellulose Properties of Interest for Paper and Packaging
Norwegian University of Science and Technology (NTNU) Department of Chemical Engineering.
Norwegian University of Science and Technology (NTNU) Department of Chemical Engineering;.
RISE., Innventia, PFI – Paper and Fiber Research Institute.ORCID-id: 0000-0003-2271-3637
2014 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Cellulose Nano-Fibrils (CNF) is a biocompatible nano-material with appealing mechanical and optical properties. The high specific surface area (SSA) of nanofibrils ensure that a large fraction of the polymer chains in each fibril are surface fibrils, meaning numerous surface hydroxyl groups will be available to form bonds between components in the paper, ensuring high density and strength. CNF may be added to conventional paper as a strengthening agent. CNF films may be used as a barrier coating, or CNF sheets may be used in a number of products due to their potential transparency, strength and barrier properties. As a paper additive, CNF as a nanomaterial acts as a material that increases density and form bonds between fibers in the paper, providing an increased strength and stiffness whereas dusting and permeability is reduced. For papers where strength is chiefly limited by inter-fiber bonding strength, increases in excess of 100 % may be achieved by addition of small amounts of CNF. Less, but still significant contributions can be seen for papers whose strength is less dependent on inter-fiber bonding strength. Due to the pore-blocking properties of CNF coupled with Cellulose’s hydrophilic properties, dewatering on the paper machine is a challenge when CNF is used in this fashion. The high density, viz. the low porosity and small pore size (~0.47 nm), of CNF films provide a significant reduction in mass-transport. Applying such a film to a less efficient barrier material, or producing a pure CNF film presents oxygen transfer rates comparable with the best synthetic polymer films produced for this purpose. Sheets of pure CNF or a CNF composite may transmit 90 % of incident light with a wavelength of 600 nm. This transparency is due to the high density and small fibril size in sheets of pure CNF or a CNF-based composite, which results in a lower scattering coefficient compared to corresponding conventional fiber based sheets. Transparent sheets such as these may be of interest in packaging applications where the packaged goods, such as foodstuffs or luxury articles, is desired displayed to the end customer. The properties of CNF, whether as a film, a paper additive or a major paper or composite component may be of significant industrial interest due to the unique properties of the material.

sted, utgiver, år, opplag, sider
2014.
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-9665OAI: oai:DiVA.org:ri-9665DiVA, id: diva2:968418
Konferanse
European Paper Week, 25th of November, Brussels, Belgium.
Tilgjengelig fra: 2016-09-12 Laget: 2016-09-12 Sist oppdatert: 2018-07-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Syverud, Kristin

Søk i DiVA

Av forfatter/redaktør
Syverud, Kristin
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 294 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.9