Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparison of Blackbody Sources for Low-Temperature IR Calibration
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Volym, flöde, temperatur o densitet.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Volym, flöde, temperatur o densitet.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Volym, flöde, temperatur o densitet.
2015 (English)In: International Journal of Thermophysics, Vol. 36, no 12, p. 3310-3319Article in journal (Other academic) Published
Abstract [en]

Radiation thermometers are traditionally mostly used in high-temperature applications. They are, however, becoming more common in different applications at room temperature or below, in applications such as monitoring frozen food and evaluating heat leakage in buildings. To measure temperature accurately with a pyrometer, calibration is essential. A problem with traditional, commercially available, blackbody sources is that ice is often formed on the surface when measuring temperatures below \(0\,{}^{\circ }\hbox {C}\). This is due to the humidity of the surrounding air and, as ice does not have the same emissivity as the blackbody source, it biases the measurements. An alternative to a traditional blackbody source has been tested by SP Technical Research Institute of Sweden. The objective is to find a cost-efficient method of calibrating pyrometers by comparison at the level of accuracy required for the intended use. A disc-shaped blackbody with a surface pyramid pattern is placed in a climatic chamber with an opening for field of view of the pyrometer. The temperature of the climatic chamber is measured with two platinum resistance thermometers in the air in the vicinity of the disc. As a rule, frost will form only if the deposition surface is colder than the surrounding air, and, as this is not the case when the air of the climatic chamber is cooled, there should be no frost or ice formed on the blackbody surface. To test the disc-shaped blackbody source, a blackbody cavity immersed in a conventional stirred liquid bath was used as a reference blackbody source. Two different pyrometers were calibrated by comparison using the two different blackbody sources, and the results were compared. The results of the measurements show that the disc works as intended and is suitable as a blackbody radiation source.

Place, publisher, year, edition, pages
2015. Vol. 36, no 12, p. 3310-3319
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-5670Local ID: 30669OAI: oai:DiVA.org:ri-5670DiVA, id: diva2:963501
Available from: 2016-09-08 Created: 2016-09-08 Last updated: 2020-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
Volym, flöde, temperatur o densitet
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 44 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf