Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tractive power in organic farming based on fuel cell technology: Energy balance and environmental load
RISE, SP – Sveriges Tekniska Forskningsinstitut, JTI Institutet för Jordbruks- och Miljöteknik.
RISE, SP – Sveriges Tekniska Forskningsinstitut, JTI Institutet för Jordbruks- och Miljöteknik.ORCID iD: 0000-0002-1662-9730
Show others and affiliations
2009 (English)In: Agricultural Systems, ISSN 0308-521X, E-ISSN 1873-2267, Vol. 102, no 1-3, p. 67-76Article in journal (Refereed) Published
Abstract [en]

This study analysed a future hypothetical organic farm self-sufficient in renewable tractor fuel. Biomass from the farm was assumed to be transported to a central fuel production plant and the fuel returned to the farm, where it was utilised in fuel cell powered tractors. The land use, energy balance and environmental impact of five different scenarios were studied. In the first two scenarios, straw was used as raw material for production of hydrogen or methanol via thermochemical gasification. In the third and fourth scenarios, short rotation forest (Salix) was used as raw material for the same fuels. In the fifth scenario, ley was used as raw material for hydrogen fuel via biogas production. The straw scenarios had the lowest impact in all studied environmental impact categories since the Salix scenarios had higher soil emissions and the ley scenario had comparatively large emissions from the fuel production. The energy balance was also favourable for straw, 16.3 and 19.5 for hydrogen and methanol respectively, compared to Salix 14.2 and 15.6. For ley to hydrogen the energy balance was only 6.1 due to low efficiency in the fuel production. In the Salix scenarios, 1.6% and 2.0% of the land was set aside for raw material production in the hydrogen and methanol scenarios respectively. In the straw scenarios no land needed to be reserved, but straw was collected on 4.3% and 5.3% of the area for hydrogen and methanol respectively. To produce hydrogen from ley, 4% of the land was harvested. The study showed that the difference in environmental performance lay in choice of raw material rather than choice of fuel. Hydrogen is a gas with low volumetric energy density, which requires an adapted infrastructure and tractors equipped with gas tanks. This leads to the conclusion that methanol probably will be the preferred choice if a fuel cell powered farm would be put into practice in the future. © 2009 Elsevier Ltd. All rights reserved.

Place, publisher, year, edition, pages
2009. Vol. 102, no 1-3, p. 67-76
National Category
Agricultural Science, Forestry and Fisheries
Identifiers
URN: urn:nbn:se:ri:diva-2449DOI: 10.1016/j.agsy.2009.07.001Scopus ID: 2-s2.0-69949086507OAI: oai:DiVA.org:ri-2449DiVA, id: diva2:960039
Available from: 2016-09-07 Created: 2016-09-07 Last updated: 2018-08-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Nordberg, Åke

Search in DiVA

By author/editor
Nordberg, Åke
By organisation
JTI Institutet för Jordbruks- och Miljöteknik
In the same journal
Agricultural Systems
Agricultural Science, Forestry and Fisheries

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 149 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7