Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Rubber track systems for conventional tractors: Effects on soil compaction and traction
RISE, SP – Sveriges Tekniska Forskningsinstitut, JTI Institutet för Jordbruks- och Miljöteknik.
2011 (engelsk)Inngår i: Soil & Tillage Research, ISSN 0167-1987, E-ISSN 1879-3444, Vol. 117, s. 103-109Artikkel i tidsskrift (Fagfellevurdert)
Abstract [en]

Traditionally, tractors have been built either for tracks or wheels, with tracks mainly on heavy tractors with high power. Today, it is possible to retrofit four separate track units on a conventional agricultural tractor, creating interesting possibilities for agriculture. The objective of the present study was to compare soil compaction and traction for tracks, single and dual wheels mounted on the same tractor type. Measurements were made on two clay soils (Eutric Cambisols) in Sweden in 2009, using an 85kW tractor with a total weight of 7700kg. The rubber track system consisted of four tracks mounted on the conventional wheel axles of the tractor. The measured stresses were similar for the tracks and dual wheels at all depths studied (15, 30 and 50cm), but were considerably higher for the single wheels at all depths. Simulations of soil stresses correlated closely to measured values for the tracks and the dual wheels, but underestimated soil stresses in the topsoil compared to measured values for the single wheel. Bulk density and penetration resistance were consistently highest and saturated hydraulic conductivity lowest after wheeling with single wheels, while there were no statistically significant differences between tracks and dual wheels. With single wheels and the tractor loaded, saturated hydraulic conductivity decreased to 0.01mh-1 from 0.13mh-1 in the control, while bulk density increased from 1.24 to 1.36Mgm-3. The stress distribution in the driving direction was relatively even along the front and rear tracks, which is an advantage compared with a long single track, which often has an uneven longitudinal stress distribution. Slip was significantly higher for the dual and single wheels compared with tracks. To utilise the large contact area of the tracks, the tractor should have a low weight in relation to the engine power. © 2011 Elsevier B.V.

sted, utgiver, år, opplag, sider
2011. Vol. 117, s. 103-109
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-2433DOI: 10.1016/j.still.2011.09.004Scopus ID: 2-s2.0-81855213107OAI: oai:DiVA.org:ri-2433DiVA, id: diva2:960023
Tilgjengelig fra: 2016-09-07 Laget: 2016-09-07 Sist oppdatert: 2017-11-21bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus
Av organisasjonen
I samme tidsskrift
Soil & Tillage Research

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 13 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.8