Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Effect of tunnel cross section on gas temperatures and heat fluxes in case of large heat release rate
Hefei University of Technology, China.
RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research.ORCID-id: 0000-0001-7744-2390
RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research.ORCID-id: 0000-0002-9340-6768
RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research.ORCID-id: 0000-0001-6758-6067
2016 (Engelska)Ingår i: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 93, s. 405-415Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Tests with liquid and solid fuels in model tunnels (1:20) were performed and analysed in order to study the effect of tunnel cross section (width and height) together with ventilation velocity on ceiling gas temperatures and heat fluxes. The model tunnel was 10m long with varying width (0.3m, 0.45m and 0.6m) and height (0.25m and 0.4m). Test results show that the maximum temperature under the ceiling is a weak function of heat release rate (HRR) and ventilation velocity for cases with HRR more than 100MW at full scale. It clearly varies with the tunnel height and is a weak function of the tunnel width. With a lower tunnel height, the ceiling is closer to the base of continuous flame zone and the temperatures become higher. Overall, the gas temperature beneath the ceiling decreases with the increasing tunnel dimensions, and increases with the increasing longitudinal ventilation velocity. The HRR is also an important factor that influences the decay rate of excess gas temperature, and a dimensionless HRR integrating HRR and other two key parameters, tunnel cross-sectional area and distance between fuel centre and tunnel ceiling, was introduced to account for the effect. An equation for the decay rate of excess gas temperature, considering both the tunnel dimensions and HRR, was developed. Moreover, a larger tunnel cross-sectional area will lead to a smaller heat flux.

Ort, förlag, år, upplaga, sidor
Elsevier, 2016. Vol. 93, s. 405-415
Nyckelord [en]
Model scale, Tunnel cross section, Gas temperature, Heat flux, Longitudinal ventilation
Nationell ämneskategori
Naturvetenskap
Identifikatorer
URN: urn:nbn:se:ri:diva-422DOI: 10.1016/j.applthermaleng.2015.09.048Scopus ID: 2-s2.0-84945253245OAI: oai:DiVA.org:ri-422DiVA, id: diva2:942258
Tillgänglig från: 2016-06-23 Skapad: 2016-06-23 Senast uppdaterad: 2023-06-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Li, Ying ZhenIngason, HaukurLönnermark, Anders

Sök vidare i DiVA

Av författaren/redaktören
Li, Ying ZhenIngason, HaukurLönnermark, Anders
Av organisationen
SP Fire Research
I samma tidskrift
Applied Thermal Engineering
Naturvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 113 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf