Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Comparing predictability of board strength between computed tomography, discrete X-ray, and 3D scanning of Norway spruce logs
RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Hållbar Samhällsbyggnad. Luleå University of Technology, Sweden.
Luleå University of Technology, Sweden.
RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Hållbar Samhällsbyggnad.
2016 (engelsk)Inngår i: Wood Material Science & Engineering, ISSN 1748-0272, E-ISSN 1748-0280, Vol. 11, nr 2, s. 116-125Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Strength graded boards of Norway spruce (Picea abies (L.) Karst.) are important products for many Scandinavian sawmills. If the bending strength of the produced boards can be predicted before sawing the logs, the raw material can be used more efficiently. In previous studies it is shown that the bending strength can be predicted to some extent using discrete X-ray scanning of logs. In this study, we have evaluated if it is possible to predict bending strength of Norway spruce boards with higher accuracy using computed tomography (CT) scanning of logs compared to a combination of discrete X-ray and 3D scanning. The method was to construct multivariate models of bending strength for three different board dimensions. Our results showed that CT scanning of logs produces better models of bending strength compared to a combination of discrete X-ray and 3D scanning. The main reason for this difference was the benefit of knowing the position of where the boards were cut from the logs and therefore detailed knot information could be used in the prediction models. Due to the small number of observations in this study, care should be taken when comparing the resulting prediction models to results from other studies.

sted, utgiver, år, opplag, sider
Taylor & Francis, 2016. Vol. 11, nr 2, s. 116-125
Emneord [en]
Bending strength, Multivariate, Partial least squares, Picea abies, Sawn timber, Wood
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-410DOI: 10.1080/17480272.2015.1022875OAI: oai:DiVA.org:ri-410DiVA, id: diva2:941896
Tilgjengelig fra: 2016-06-23 Laget: 2016-06-23 Sist oppdatert: 2019-06-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fullteksthttp://www.tandfonline.com/doi/pdf/10.1080/17480272.2015.1022875
Av organisasjonen
I samme tidsskrift
Wood Material Science & Engineering

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 39 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.8