Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The power of heterogeneity: Parameter relationships from distributions
RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Food and Bioscience. University of South Australia, Australia; University College London, Australia.ORCID-id: 0000-0002-5956-9934
University of South Australia, Australia; Victoria University of Wellington, New Zeeland.
University of South Australia, Australia.
University of South Australia, Australia.
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 11, nr 5, artikel-id e0155718Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Complex scientific data is becoming the norm, many disciplines are growing immensely data-rich, and higher-dimensional measurements are performed to resolve complex relationships between parameters. Inherently multi-dimensional measurements can directly provide information on both the distributions of individual parameters and the relationships between them, such as in nuclear magnetic resonance and optical spectroscopy. However, when data originates from different measurements and comes in different forms, resolving parameter relationships is a matter of data analysis rather than experiment. We present a method for resolving relationships between parameters that are distributed individually and also correlated. In two case studies, we model the relationships between diameter and luminescence properties of quantum dots and the relationship between molecular weight and diffusion coefficient for polymers. Although it is expected that resolving complicated correlated relationships require inherently multi-dimensional measurements, our method constitutes a useful contribution to the modelling of quantitative relationships between correlated parameters and measurements. We emphasise the general applicability of the method in fields where heterogeneity and complex distributions of parameters are obstacles to scientific insight.

Ort, förlag, år, upplaga, sidor
Public Library of Science , 2016. Vol. 11, nr 5, artikel-id e0155718
Nationell ämneskategori
Naturvetenskap
Identifikatorer
URN: urn:nbn:se:ri:diva-389DOI: 10.1371/journal.pone.0155718Scopus ID: 2-s2.0-84969820290OAI: oai:DiVA.org:ri-389DiVA, id: diva2:941352
Tillgänglig från: 2016-06-22 Skapad: 2016-06-22 Senast uppdaterad: 2019-06-19Bibliografiskt granskad

Open Access i DiVA

fulltext(867 kB)14 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 867 kBChecksumma SHA-512
2ddcabed33c77af15380f9a3a8dc981a804e0eda363a23a04d181d528e033e87e713d7da07f38da0c6fecd795c3553b09183a415f1671e434367477e277559b0
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Röding, Magnus

Sök vidare i DiVA

Av författaren/redaktören
Röding, Magnus
Av organisationen
SP Food and Bioscience
I samma tidskrift
PLoS ONE
Naturvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 14 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 23 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.8