Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
BMI: Bounded Mutual Information for Efficient Privacy-Preserving Feature Selection
RISE Research Institutes of Sweden, Digitala system, Industriella system.ORCID-id: 0000-0002-1954-760x
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0001-6116-164X
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0002-2772-4661
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.
Visa övriga samt affilieringar
2024 (Engelska)Ingår i: Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349, Vol. 14983 LNCS, s. 353-373Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We introduce low complexity bounds on mutual information for efficient privacy-preserving feature selection with secure multi-party computation (MPC). Considering a discrete feature with N possible values and a discrete label with M possible values, our approach requires O(N) multiplications as opposed to O(NM) in a direct MPC implementation of mutual information. Our experimental results show that for regression tasks, we achieve a computation speed up of over 1,000× compared to a straightforward MPC implementation of mutual information, while achieving similar accuracy for the downstream machine learning model.

Ort, förlag, år, upplaga, sidor
Springer Science and Business Media Deutschland GmbH , 2024. Vol. 14983 LNCS, s. 353-373
Nyckelord [en]
Differential privacy; Complexity bounds; Computation speed; Features selection; Lower complexity; Multiparty computation; Mutual informations; Privacy; Privacy preserving; Secure multi-party computation; Speed up
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:ri:diva-76193DOI: 10.1007/978-3-031-70890-9_18Scopus ID: 2-s2.0-85204610017OAI: oai:DiVA.org:ri-76193DiVA, id: diva2:1914214
Konferens
29th European Symposium on Research in Computer Security, ESORICS 2024. Bydgoszcz. 16 September 2024 through 20 September 2024
Anmärkning

This research is funded by the EU Horizon Europe project HARPOCRATES (Grant ID. 101069535) and H2020 project CONCORDIA (Grant ID. 830927). We thank Tuomas Karhu for preparing the SpO2 data as well as help and advice in the process. We would also like to thank the anonymous reviewers for their comments and suggested improvements.

Tillgänglig från: 2024-11-18 Skapad: 2024-11-18 Senast uppdaterad: 2024-11-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Eklund, DavidIacovazzi, AlfonsoWang, HanRaza, Shahid

Sök vidare i DiVA

Av författaren/redaktören
Eklund, DavidIacovazzi, AlfonsoWang, HanRaza, Shahid
Av organisationen
Industriella systemDatavetenskap
I samma tidskrift
Lecture Notes in Computer Science
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 10 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf