The city of Gothenburg public procured geofencing technology and did a pilot during fall 2022 with geofenced service trips vehicles (retrofitted). This report investigates the challenges and opportunities associated with procuring geofencing technology, addressing aspects such as needs, market analysis, risk, alternative solutions, legislative framework, and much more based on lessons learned from the pilot. Geofencing, defined as the creation of virtual boundaries to monitor, inform, and control traffic using electronic communication technologies or predefined boundaries within vehicles, lacks standardization and comprises various technical solutions. Its functionality depends on digital mapping, vehicle tracking methods like GNSS, onboard equipment, real-time connectivity, and additional databases for traffic rules. Geofencing offers degrees of control, from informing and alerting drivers about speed limits to actively restricting vehicle speed, with possibilities for static, dynamic, and smart adaptations. Applications range from enhancing traffic safety by alerting drivers and controlling vehicle speed to improving transport efficiency through optimized route selection and environmental benefits by reducing emissions and noise pollution. However, regulatory challenges persist, such as the absence of type-approved geofencing equipment and the need to define functional requirements rather than specific technologies in legal frameworks, presenting both opportunities and obstacles for its implementation in road traffic management and procurement processes. The first step in public procurement involves laying the groundwork by comprehensively understanding the buying organization's needs and market capabilities to meet them. The city identified key goals such as safe travel and driver assistance. The city explored existing agreements and engaged operators for a geofencing pilot to address speed compliance and traffic safety concerns, alongside researching market options and risks associated with third-party equipment installation and data privacy. Alternatives like ISA and ADAS were considered but deemed insufficient. In the second step the procurement is carried out, which includes tasks such as producing procurement documents, advertising, evaluating tenders, and ultimately selecting a supplier. The city procured the geofencing technology by direct public procurement and used a traditional public procurement to get hold of vehicles and drivers. In the third step of the public procurement implementation is in focus on, executing the pilot and evaluating its outcomes, particularly concerning geofencing technology. Challenges arose during implementation, including difficulties in accurately mapping zones to individual vehicles due to problems with the speed box installed. The city of Gothenburg learned valuable lessons, highlighting the importance of direct communication with drivers, verifying technology before widespread adoption, and close collaboration between all stakeholders. Despite challenges, the pilot provided valuable data and insights, with recommendations offered for future geofencing initiatives, emphasizing early supplier dialogue, thorough testing, user experience understanding, and involving relevant stakeholders from the outset. In this report insights, advice and lessons learned are also shared. Technical hurdles include the lack of standardized geofencing, difficulty in retrofitting diverse vehicle fleets, and limited market availability. Organizational challenges encompass the need for a needs-driven approach, internal and external collaboration, and balancing technology with user acceptance. Concerns about data privacy and driver behaviour emerge, requiring careful navigation of GDPR regulations. Strategically deciding the city's role in IT-solutions, data collection, and responsibility for vehicle behaviour poses business-related challenges. The report concludes that while geofencing technology isn't yet ready for full-scale implementation, further pilots are necessary for development. Future work involves exploring alternative solutions, enhancing internal processes, and conducting larger pilots to advance understanding and implementation of geofencing technology.
2024. , p. 46