Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
BRAVENT – Storskala branntester (del 1): Brannytelse for ikke-brannklassifiserte ventilasjonskomponenter
RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.ORCID iD: 0000-0002-8413-7500
SINTEF, Norway.
Oslobygg KF, Norway.
GK Norge, Norway.
Show others and affiliations
2024 (Norwegian)Report (Other academic)
Abstract [en]

BRAVENT – Large-scale fire tests (part 1): Fire performance for non-fire rated ventilation components In the overall BRAVENT project, the goal is to generate answers and documentation on current issues related to ventilation and fire by examining these with experimental fire tests. The present study aimed to evaluate the fire performance of key non-fire-rated components, mainly DCV dampers and exhaust filters, in a comfort ventilation system by testing the hypothesis that the ventilation components will not be damaged by fire within 30 or 60 minutes. To test the hypothesis, a total of 14 large-scale fire tests with different fuels were carried out. The tests were carried out in a test building with several rooms that are representative of classrooms, offices, and corridors. The fire tests were designed to investigate relevant fire scenarios for school buildings, but the findings from the tests can also be used for other purpose-built buildings. The building was equipped with a full-fledged damper-optimized ventilation system, sized to serve a total of 450 m2 and thus provide a realistic basis for the fire tests. Currently, there is no documentation on how non-fire-rated dampers are affected by high temperatures that occur during a fire. The temperature specifications given for non-fire rated DCV dampers are intended for normal operation. Two different types of DCV dampers were tested. In one type, the airflow was measured with a measuring cross, and for the other, the airflow was measured with sensors integrated into the damper blade itself. In several of the conducted tests the non-fire-rated dampers were not able to sustain their function for the required duration of 30 minutes or longer, and failed completely when the temperature inside or outside the dampers reached about 200 ºC. Misreporting of some temperature measurements in the building management system already occurred at lower temperatures, around 120˚C, without significantly affecting the delivered air flow rate. For the damper type with a measuring cross, the plastic hoses connecting the measuring cross and the measuring transducer for the damper melted when hot smoke was transported through the damper. This failure resulted in the DCV damper measuring too low or no airflow. In several tests, this measurement error meant that the DCV damper opened fully, trying to achieve a large enough airflow. In one of the tests where the supply air damper was placed inside the fire room, such a fault on the supply air damper caused it to close completely. In addition to the damage to the dampers, the power supply to the damper was destroyed, and a fuse for the power supply in the control cabinet was short-circuited. This resulted in the building management system losing contact with all the dampers. This shows that a local error can cause the entire system to fail. For the other damper type, where the sensors were located in the damper blade, the high temperatures caused the entire damper blade to melt. It was not observed that soot in the fire smoke led to problems with the dampers' measuring sensors for any of the damper types examined. This indicates that for the performed test series, high temperature and not soot was the greatest challenge for the dampers in the event of a fire. In addition to examining how dampers are affected by fire, there was also an investigation into how the filter performs during a fire. It was found that the filter could largely capture the soot particles in the smoke. This means that equipment located downstream of the filter is relatively well protected against soot, and the possibility of soot contamination to the supply air side via a rotating heat recovery unit can, therefore, be considered minimal as long as the filter is not damaged. However, when the filter collects so much soot, it shows that the potential for the filter to clog. How quickly this happens depends, among other things, on the materials that burn and the size of the fire in relation to the air handling unit's capacity. This also aligns with results from an earlier BRAVENT project [1]. The air temperature in the unit was in all tests carried out below 60˚C and thus lower than the filters' maximum operating temperature of 70˚C. The conclusion from the tests is that the extraction principle with non-fire-rated components cannot be considered a safe strategy for 30 or 60 minutes.

Place, publisher, year, edition, pages
RISE Research Institutes of Sweden , 2024. , p. 177
Series
RISE Rapport ; 2024:37
Keywords [en]
Smoke ventilation, DCV-damper, damper optimized ventilation system, largescale fire tests
Keywords [no]
Røykventilasjon, DCV-spjeld, spjeldoptimalisert ventilasjonssystem, storskala branntester
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:ri:diva-73140ISBN: 978-91-89896-94-9 (electronic)OAI: oai:DiVA.org:ri-73140DiVA, id: diva2:1858218
Note

Finansiert av: Norges forskningsråd, program SAMRISK-2-Samfunnssikkerhet og risiko, prosjektnummer 321099 og prosjektpartnerne

Available from: 2024-05-16 Created: 2024-05-16 Last updated: 2024-06-03Bibliographically approved

Open Access in DiVA

fulltext(20798 kB)15 downloads
File information
File name FULLTEXT02.pdfFile size 20798 kBChecksum SHA-512
cec0c6bfbb00535eeee47c575692d2fd003e1b4c258c208b1f6d04c7201abdf3c49d468422b5b1dea893457125bae57ddfc369e6be791e6537122ba122c1a77e
Type fulltextMimetype application/pdf

Authority records

Fjærestad, Janne SirenMeraner, Christoph

Search in DiVA

By author/editor
Fjærestad, Janne SirenMeraner, Christoph
By organisation
Fire and Safety
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 27 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 84 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf