Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A library for wall-modelled large-eddy simulation based on OpenFOAM technology
Uppsala University, Sweden.
Uppsala University, Sweden.
RISE Research Institutes of Sweden, Safety and Transport, Maritime department. Uppsala University, Sweden; FOI, Sweden.ORCID iD: 0000-0002-3829-0918
2019 (English)In: Computer Physics Communications, ISSN 0010-4655, E-ISSN 1879-2944, Vol. 239, p. 204-224Article in journal (Refereed) Published
Abstract [en]

This work presents a feature-rich open-source library for wall-modelled large-eddy simulation (WMLES), which is a turbulence modelling approach that reduces the computational cost of standard (wall-resolved) LES by introducing special treatment of the inner region of turbulent boundary layers (TBLs). The library is based on OpenFOAM and enhances the general-purpose LES solvers provided by this software with state-of-the-art wall modelling capability. The included wall models belong to the class of wall-stress models that account for the under-resolved turbulent structures by predicting and enforcing the correct local value of the wall shear stress. A review of this approach is given, followed by a detailed description of the library, discussing its functionality and extensible design. The included wall-stress models are presented, based on both algebraic and ordinary differential equations. To demonstrate the capabilities of the library, it was used for WMLES of turbulent channel flow and the flow over a backward-facing step (BFS). For each flow, a systematic simulation campaign was performed, in order to find a combination of numerical schemes, grid resolution and wall model type that would yield a good predictive accuracy for both the mean velocity field in the outer layer of the TBLs and the mean wall shear stress. The best result, â1% error in the above quantities, was achieved for channel flow using a mildly dissipative second-order accurate scheme for the convective fluxes applied on an isotropic grid with 27000 cells per ÎŽ 3 -cube, where ÎŽ is the channel half-height. In the case of flow over a BFS, this combination led to the best agreement with experimental data. An algebraic model based on Spalding’s law of the wall was found to perform well for both flows. On the other hand, the tested more complicated models, which incorporate the pressure gradient in the wall shear stress prediction, led to less accurate results. Program Summary: Program Title: libWallModelledLES Program Files doi: http://dx.doi.org/10.17632/m8dnsnp4nd.1 Licensing provisions: GPLv3 Programming language: C++ Nature of problem: Large-eddy simulation (LES) is a scale-resolving turbulence modelling approach providing a high level of predictive accuracy. However, LES of high Reynolds number wall-bounded flows is prohibitively computationally expensive due to the need for resolving the inner region of turbulent boundary layers (TBLs) [1]. This inhibits the application of LES to many industrially relevant flows [2] and prompts for the development of novel modelling techniques that would modify the LES approach in a way that allows it to retain its accuracy (at least away from walls) yet significantly lower its computational cost. Solution method: Wall-modelled LES (WMLES) is an approach that is based on complementing LES with special near-wall modelling that allows to leave the inner layer of TBLs unresolved by the computational grid. Many types of wall models have been proposed [1,3], commonly tested within the framework of in-house research codes. Here, an open-source library implementing several wall models is presented. The library is based on OpenFOAM, which is currently the most widely used general-purpose open-source software for computational fluid dynamics

Place, publisher, year, edition, pages
Elsevier B.V. , 2019. Vol. 239, p. 204-224
Keywords [en]
Algebra; Atmospheric thermodynamics; Boundary layer flow; Boundary layers; C++ (programming language); Channel flow; Computational fluid dynamics; Fluid mechanics; Large eddy simulation; Modeling languages; NASA; Open source software; Open systems; Ordinary differential equations; Reynolds number; Shear flow; Shear stress; Turbulence; Turbulent flow; Two phase flow; Velocity, Boundary layer turbulence; Complex turbulent flows; Computational methods in fluid dynamics; Flow over a backward facing steps; Modelling capabilities; OpenFOAM; Turbulent boundary layers; Turbulent channel flows, Wall flow
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:ri:diva-72597DOI: 10.1016/j.cpc.2019.01.016Scopus ID: 2-s2.0-85061639309OAI: oai:DiVA.org:ri-72597DiVA, id: diva2:1851719
Available from: 2024-04-15 Created: 2024-04-15 Last updated: 2024-04-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Liefvendahl, Mattias

Search in DiVA

By author/editor
Liefvendahl, Mattias
By organisation
Maritime department
In the same journal
Computer Physics Communications
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf