Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Optimizing Signal Management in a Vaccine Adverse Event Reporting System: A Proof-of-Concept with COVID-19 Vaccines Using Signs, Symptoms, and Natural Language Processing
University of Copenhagen, Denmark.
GSK, United Kingdom; London School of Hygiene and Tropical Medicine, United Kingdom.
GSK, United Kingdom.
Uppsala University, Sweden.
Visa övriga samt affilieringar
2024 (Engelska)Ingår i: Drug Safety, ISSN 0114-5916, E-ISSN 1179-1942, Vol. 47, nr 2, s. 173-Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Introduction: The Vaccine Adverse Event Reporting System (VAERS) has already been challenged by an extreme increase in the number of individual case safety reports (ICSRs) after the market introduction of coronavirus disease 2019 (COVID-19) vaccines. Evidence from scientific literature suggests that when there is an extreme increase in the number of ICSRs recorded in spontaneous reporting databases (such as the VAERS), an accompanying increase in the number of disproportionality signals (sometimes referred to as ‘statistical alerts’) generated is expected. Objectives: The objective of this study was to develop a natural language processing (NLP)-based approach to optimize signal management by excluding disproportionality signals related to listed adverse events following immunization (AEFIs). COVID-19 vaccines were used as a proof-of-concept. Methods: The VAERS was used as a data source, and the Finding Associated Concepts with Text Analysis (FACTA+) was used to extract signs and symptoms of listed AEFIs from MEDLINE for COVID-19 vaccines. Disproportionality analyses were conducted according to guidelines and recommendations provided by the US Centers for Disease Control and Prevention. By using signs and symptoms of listed AEFIs, we computed the proportion of disproportionality signals dismissed for COVID-19 vaccines using this approach. Nine NLP techniques, including Generative Pre-Trained Transformer 3.5 (GPT-3.5), were used to automatically retrieve Medical Dictionary for Regulatory Activities Preferred Terms (MedDRA PTs) from signs and symptoms extracted from FACTA+. Results: Overall, 17% of disproportionality signals for COVID-19 vaccines were dismissed as they reported signs and symptoms of listed AEFIs. Eight of nine NLP techniques used to automatically retrieve MedDRA PTs from signs and symptoms extracted from FACTA+ showed suboptimal performance. GPT-3.5 achieved an accuracy of 78% in correctly assigning MedDRA PTs. Conclusion: Our approach reduced the need for manual exclusion of disproportionality signals related to listed AEFIs and may lead to better optimization of time and resources in signal management. © 2023, The Author(s).

Ort, förlag, år, upplaga, sidor
Adis , 2024. Vol. 47, nr 2, s. 173-
Nationell ämneskategori
Annan medicinteknik Språkteknologi (språkvetenskaplig databehandling)
Identifikatorer
URN: urn:nbn:se:ri:diva-68786DOI: 10.1007/s40264-023-01381-6Scopus ID: 2-s2.0-85178895864OAI: oai:DiVA.org:ri-68786DiVA, id: diva2:1827556
Tillgänglig från: 2024-01-15 Skapad: 2024-01-15 Senast uppdaterad: 2024-05-27

Open Access i DiVA

fulltext(922 kB)37 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 922 kBChecksumma SHA-512
941cdac8176aef2df4ae68e730f9ea615efbd62d44e9bc8ecb2a8bf12e53f35d670dcff4473a7ecc43de07597e878df0a6552b8fdcbb86c29a032a1d067d0621
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Dürlich, Luise

Sök vidare i DiVA

Av författaren/redaktören
Dürlich, Luise
Av organisationen
Datavetenskap
I samma tidskrift
Drug Safety
Annan medicinteknikSpråkteknologi (språkvetenskaplig databehandling)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 37 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 172 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf