Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Indoor radon interval prediction in the Swedish building stock using machine learning
RISE Research Institutes of Sweden, Säkerhet och transport, Mätteknik. Lund University, Sweden.ORCID-id: 0000-0002-2178-5391
RISE Research Institutes of Sweden, Samhällsbyggnad, Systemomställning och tjänsteinnovation.ORCID-id: 0000-0002-8107-7768
RISE Research Institutes of Sweden, Säkerhet och transport, Mätteknik.ORCID-id: 0000-0002-9860-4472
RISE Research Institutes of Sweden, Samhällsbyggnad, Systemomställning och tjänsteinnovation.ORCID-id: 0000-0002-5044-6989
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 245, artikel-id 110879Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Indoor radon represents a health hazard for occupants. However, the indoor radon measurement rate is low in Sweden because of no mandatory requirements. Measuring indoor radon on an urban scale is complicated, machine learning exploiting existing data for pattern identification provides a cost-efficient approach to estimate indoor radon exposure in the building stock. Extreme gradient boosting (XGBoost) models and deep neural network (DNN) models were developed based on indoor radon measurement records, property registers, and geogenic information. The XGBoost models showed promising results in predicting indoor radon intervals for different types of buildings with macro-F1 between 0.93 and 0.96, whereas the DNN models attained macro-F1 between 0.64 and 0.74. After that, the XGBoost models trained on the national indoor radon dataset were transferred to fit building registers in metropolitan regions to estimate the indoor radon intervals in non-measured and measured buildings by regions and building classes. By comparing the prediction results and the statistical summary of indoor radon intervals in measured buildings, the model uncertainty and validity were determined. The study ascertains the prediction performance of machine learning models in classifying indoor radon intervals and discusses the benefits and limitations of the data-driven approach. The research outcomes can assist preliminary large-scale indoor radon distribution estimation for relevant authorities and guide onsite measurements for prioritized building stock prone to indoor radon exposure. 

Ort, förlag, år, upplaga, sidor
Elsevier Ltd , 2023. Vol. 245, artikel-id 110879
Nyckelord [en]
Sweden; Buildings; Forecasting; Health hazards; Learning systems; Neural network models; Radon; Uncertainty analysis; Building stocks; Deep learning; Exposure estimation; Indoor radon; Machine-learning; Predictive models; Radon exposure; Radon exposure estimation; Regional building stock; Xgboost; building; geogenic source; indoor radon; machine learning; prediction; Deep neural networks
Nationell ämneskategori
Samhällsbyggnadsteknik
Identifikatorer
URN: urn:nbn:se:ri:diva-67658DOI: 10.1016/j.buildenv.2023.110879Scopus ID: 2-s2.0-85172459457OAI: oai:DiVA.org:ri-67658DiVA, id: diva2:1815003
Anmärkning

This work has received funding from the Swedish Foundation for Strategic Research (SSF) [ FID18-0021 ] and the Maj and Hilding Brosenius Research Foundation .

Tillgänglig från: 2023-11-27 Skapad: 2023-11-27 Senast uppdaterad: 2024-02-14Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Wu, Pei-YuJohansson, TimSandels, ClaesMangold, MikaelMjörnell, Kristina

Sök vidare i DiVA

Av författaren/redaktören
Wu, Pei-YuJohansson, TimSandels, ClaesMangold, MikaelMjörnell, Kristina
Av organisationen
MätteknikSystemomställning och tjänsteinnovationRISE Research Institutes of Sweden
I samma tidskrift
Building and Environment
Samhällsbyggnadsteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 22 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf