Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Environmental and biodiversity performance of a novel single cell protein for rainbow trout feed
RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food. KTH Royal Institute of Technology, Sweden.ORCID iD: 0000-0001-5888-4943
RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.ORCID iD: 0000-0001-9659-3709
RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food. SLU Swedish University of Agricultural Sciences, Sweden.ORCID iD: 0000-0002-2473-790X
SLU Swedish University of Agricultural Sciences, Sweden.
Show others and affiliations
2024 (English)In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 907, article id 168018Article in journal (Refereed) Published
Abstract [en]

Seafood has an important role to play to achieve a sustainable food system that provides healthy food to a growing world population. Future seafood production will be increasingly reliant on aquaculture where feed innovation is essential to reduce environmental impacts and minimize feed and food competition. This study aimed to investigate whether a novel single cell protein feed ingredient based on Paecilomyces variotii grown on a side stream from the forest industry could improve environmental sustainability of farmed rainbow trout (Oncorhynchus mykiss) by replacing the soy protein concentrate used today. A Life Cycle Assessment including commonly addressed impacts but also the rarely assessed biodiversity impacts was performed. Furthermore, feeding trials were included for potential effects on fish growth, i.e., an assessment of the environmental impacts for the functional unit ‘kg feed required to produce 1 kg live-weight rainbow trout’. Results showed that the best experimental diet containing P. variotii performed 16–73 % better than the control diet containing soy protein concentrate in all impact categories except for energy demand (21 % higher impact). The largest environmental benefits from replacing soy protein with P. variotii in rainbow trout diets was a 73 % reduction of impact on biodiversity and halved greenhouse gas emissions. The findings have high relevance for the aquaculture industry as the production scale and feed composition was comparable to commercial operations and because the effect on fish growth from inclusion of the novel ingredient in a complete diet was evaluated. The results on biodiversity loss from land use change and exploitation through fishing suggest that fishery can dominate impacts and exclusion thereof can greatly underestimate biodiversity impact. Finally, a novel feed ingredient grown on side streams from the forest industry has potential to add to food security through decreasing the dependence on increasingly scarce agricultural land resources. 

Place, publisher, year, edition, pages
Elsevier B.V. , 2024. Vol. 907, article id 168018
Keywords [en]
Environmental impact; Fish; Fish products; Fisheries; Food supply; Forestry; Gas emissions; Greenhouse gases; Land use; Life cycle; Proteins; Sustainable development; Ecosystem quality; Feed ingredients; Filamentous fungus; Forest industry; LCA; Oncorhynchus mykiss; Paecilomyces variotii; Rainbow trout; Side streams; Single cell proteins; biodiversity; cell; environmental impact; life cycle analysis; performance assessment; protein; Biodiversity
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:ri:diva-67952DOI: 10.1016/j.scitotenv.2023.168018Scopus ID: 2-s2.0-85175487605OAI: oai:DiVA.org:ri-67952DiVA, id: diva2:1814653
Note

This work resulted from the SALMONAID project supported by Vinnova (grant number 2016-03351 ) and the Blue Food Center funded by FORMAS (grant number 2020-02834 ). 

Available from: 2023-11-27 Created: 2023-11-27 Last updated: 2023-12-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Bergman, KristinaWoodhouse, AnnaLangeland, MarkusAlriksson, BjörnHornborg, Sara

Search in DiVA

By author/editor
Bergman, KristinaWoodhouse, AnnaLangeland, MarkusAlriksson, BjörnHornborg, Sara
By organisation
Agriculture and FoodBiorefinery and Energy
In the same journal
Science of the Total Environment
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 100 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf