Driftinformation
Ett driftavbrott i samband med versionsuppdatering är planerat till 24/9-2024, kl 12.00-14.00. Under den tidsperioden kommer DiVA inte att vara tillgängligt
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Perceptron Theory Can Predict the Accuracy of Neural Networks
RISE Research Institutes of Sweden, Digitala system, Datavetenskap. University of California at Berkeley, USA.ORCID-id: 0000-0002-6032-6155
University of Rome “La Sapienza”, Italy.
Intel Labs, USA.
University of Rome “La Sapienza”, Italy.ORCID-id: 0000-0002-9876-1494
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: IEEE Transactions on Neural Networks and Learning Systems, ISSN 2162-237X, E-ISSN 2162-2388Artikel i tidskrift (Refereegranskat) Epub ahead of print
Abstract [en]

Multilayer neural networks set the current state of the art for many technical classification problems. But, these networks are still, essentially, black boxes in terms of analyzing them and predicting their performance. Here, we develop a statistical theory for the one-layer perceptron and show that it can predict performances of a surprisingly large variety of neural networks with different architectures. A general theory of classification with perceptrons is developed by generalizing an existing theory for analyzing reservoir computing models and connectionist models for symbolic reasoning known as vector symbolic architectures. Our statistical theory offers three formulas leveraging the signal statistics with increasing detail. The formulas are analytically intractable, but can be evaluated numerically. The description level that captures maximum details requires stochastic sampling methods. Depending on the network model, the simpler formulas already yield high prediction accuracy. The quality of the theory predictions is assessed in three experimental settings, a memorization task for echo state networks (ESNs) from reservoir computing literature, a collection of classification datasets for shallow randomly connected networks, and the ImageNet dataset for deep convolutional neural networks. We find that the second description level of the perceptron theory can predict the performance of types of ESNs, which could not be described previously. Furthermore, the theory can predict deep multilayer neural networks by being applied to their output layer. While other methods for prediction of neural networks performance commonly require to train an estimator model, the proposed theory requires only the first two moments of the distribution of the postsynaptic sums in the output neurons. Moreover, the perceptron theory compares favorably to other methods that do not rely on training an estimator model.

Ort, förlag, år, upplaga, sidor
2023.
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:ri:diva-67822DOI: 10.1109/TNNLS.2023.3237381OAI: oai:DiVA.org:ri-67822DiVA, id: diva2:1813830
Tillgänglig från: 2023-11-22 Skapad: 2023-11-22 Senast uppdaterad: 2024-06-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Kleyko, Denis

Sök vidare i DiVA

Av författaren/redaktören
Kleyko, DenisPanella, Massimo
Av organisationen
Datavetenskap
I samma tidskrift
IEEE Transactions on Neural Networks and Learning Systems
Elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 5 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf