Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Risks with hydrogen in underground facilities
RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.ORCID iD: 0000-0001-8548-657x
2023 (English)Report (Other academic)
Abstract [en]

RISE has previously studied alternative fuels, such as batteries and gaseous fuels including liquid and compressed hydrogen (GH2). Each fuel has its unique risks. Liquid hydrogen (LH2) is a cryogenic fluid and is thus stored in cooled liquid form, which entails specific risks. The purpose of this report is to, based on the current state of research, map the risks of hydrogen in underground facilities in relation to conventional fuels and investigate which technical measures can be taken to reduce the risks. Unlike diesel, hydrogen (and for instance methane or gasoline) has such a low flash point that an emission can be ignited at normal temperature by a small ignition source. Hydrogen is also very buoyant, with strong diffusion and dispersion characteristics, accordingly it accumulates at high points in a subsurface environment. Hydrogen requires very low energy to ignite at or near stoichiometric mixing with air at around 30%. The lower flammability limit is, compared to other flammable fuel/air mixtures high at around 4%, which means that many smaller releases in ventilated spaces will be too lean. Explosions would require a higher hydrogen concentration, above 8% or more. In subsurface environments, containment contributes to a higher increase in pressure, as well as an increased risk of explosion for both GH2 and LH2. The handling of hydrogen underground can therefore be seen as problematic. When it comes to hydrogen as a vehicle fuel, however, there are safety measures to achieve equivalent safety with conventional vehicles. For example, the shut-off valve (mandatory in regulation) on each tank that reduces the risk of leakage, and through the development of explosion-free composite tanks (not mandatory in regulation) in the event of fire that provide a less dangerous fire scenario than a diesel or gasoline tank in case of fire. When it finally comes to transporting hydrogen, pipelines are the long-term sustainable (and safe) alternative. Transport of compressed hydrogen gives a low amount of gas per trailer and entails relatively higher risks than CNG underground, for example in tunnels. The usage of liquid hydrogen, so far, has an impressive safety record, events like BLEVE or fireballs appear to be rare. The transport of liquid hydrogen provides a larger amount of hydrogen per trailer (than for compressed hydrogen) with a relatively lower risk than, for example, LNG in the open, but a slightly higher risk for explosion of accumulated gas compared to GH2 in enclosed spaces. The safety requirements for transport of compressed hydrogen are less stringent than for road vehicles, e.g., with regard to shut-off valves and melt-fuses and could be improved. Several risk mitigation measures for tunnels and other underground facilities have been identified.

Place, publisher, year, edition, pages
2023. , p. 34
Series
RISE Rapport ; 2023:85
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:ri:diva-67759ISBN: 978-91-89821-58-3 (electronic)OAI: oai:DiVA.org:ri-67759DiVA, id: diva2:1812209
Note

Finansierat av RISE Tunnel and Underground Safety Center (TUSC)

Available from: 2023-11-15 Created: 2023-11-15 Last updated: 2023-11-15Bibliographically approved

Open Access in DiVA

fulltext(942 kB)33 downloads
File information
File name FULLTEXT01.pdfFile size 942 kBChecksum SHA-512
0257d99559869041445a5857d924d6d5f35704bf28eab874a54591317c4265af111b6df3017cf4c7907010e9a74ecaa64fd591ea2c9fe13e62161766fcf918ff
Type fulltextMimetype application/pdf

Authority records

Gehandler, Jonatan

Search in DiVA

By author/editor
Gehandler, Jonatan
By organisation
Fire and Safety
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 33 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 182 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf