Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Direct shear tests on large natural and artificially induced rock fractures in a new laboratory equipment
RISE Research Institutes of Sweden, Materials and Production, Applied Mechanics.ORCID iD: 0000-0003-4526-4061
RISE Research Institutes of Sweden, Materials and Production, Applied Mechanics.ORCID iD: 0000-0002-3481-1368
RISE Research Institutes of Sweden, Materials and Production, Applied Mechanics.ORCID iD: 0000-0002-4551-5644
2023 (English)In: Proceedings of the ISRM 15th International Congress on Rock Mechanics and Rock Engineering & 72nd Geomechanics Colloquium: Challenges in Rock Mechanics and Rock Engineering / [ed] Schubert, W. & Kluckner, A., Salzburg: Austrian Society for Geomechanics , 2023, p. 2709-2714, article id 1827Conference paper, Published paper (Refereed)
Abstract [en]

A direct shear equipment for testing rock fractures up to 400×600 mm size, and up to 5 MN force in both normal and shear loading directions, was developed. Normal loading and direct shear tests under constant normal stiffness (CNS) and constant normal load (CNL) conditions were conducted on 300×500 mm specimens, one planar steel joint and two natural and two tensile induced rock fractures. Design targets, e.g. system to maintain undisturbed fractures up to testing and high system stiffnesses to achieve well-controlled shear tests, were verified by the experiments. A new optical system for local deformation measurements was used to accurately determine fracture displacements besides conventional non-local deformation measurements. The determined normal stiffnesses were similar previous results from the literature on smaller fractures, whereas the shear stiffness data are novel. The results provide a new insight into processes at the onset of fracture slip.

Place, publisher, year, edition, pages
Salzburg: Austrian Society for Geomechanics , 2023. p. 2709-2714, article id 1827
Keywords [sv]
Rock fractures, large scale direct shear equipment, local optical deformation measurements, CNL, CNS, fracture stiffness
National Category
Geotechnical Engineering
Identifiers
URN: urn:nbn:se:ri:diva-67541OAI: oai:DiVA.org:ri-67541DiVA, id: diva2:1805459
Conference
ISRM 15th International Congress on Rock Mechanics and Rock Engineering & 72nd Geomechanics Colloquium, Salzburg, Austria, October 9-14, 2023
Funder
Swedish Nuclear Fuel and Waste Management Company, SKB
Note

Funding of this work: SKB Svensk Kärnbränslehantering,  

NWMO Nuclear Waste Management Co https://www.nwmo.ca/ , 

BeFo Stiftelsen Bergteknisk Forskning https://www.befoonline.org/

Available from: 2023-10-17 Created: 2023-10-17 Last updated: 2023-10-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Full text

Authority records

Jacobsson, LarsFlansbjer, MathiasLarsson, Jörgen

Search in DiVA

By author/editor
Jacobsson, LarsFlansbjer, MathiasLarsson, Jörgen
By organisation
Applied Mechanics
Geotechnical Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf