High-frequency shock-type vibration (HFV) with a frequency content mainly above 1250 Hz, e.g., from impact wrenches, is likely to cause a significant amount of vibration injuries and even hand-arm vibration syndrome. The objective of this study was to measure vibration up to 100 kHz with a Laser Doppler Vibrometer (LDV) and investigate the variation of vibration over the machine surface, the vibration propagation into finger tissue, and the vibration reduction on the finger tissue due to a foamed polymer layer. Our results showed that the vibration on the handle varies moderately and that the amplitudes are higher on the machine surface. A large proportion of the vibration is transferred into the finger tissue and thereby subjects the finger tissue to high-vibration amplitudes, but it is effectively reduced by a thin layer of foamed polymer.