Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Toward Photoactive Wallpapers Based on ZnO-Cellulose Nanocomposites
RISE Research Institutes of Sweden, Digitala system, Smart hårdvara.ORCID-id: 0000-0002-2652-3454
Linköping University, Sweden.
Linköping University, Sweden.
Linköping University, Sweden.
Vise andre og tillknytning
2023 (engelsk)Inngår i: Global Challenges, E-ISSN 2056-6646, Vol. 7, nr 9, artikkel-id 2300034Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The quest for eco-friendly materials with anticipated positive impact for sustainability is crucial to achieve the UN sustainable development goals. Classical strategies of composite materials can be applied on novel nanomaterials and green materials. Besides the actual technology and applications also processing and manufacturing methods should be further advanced to make entire technology concepts sustainable. Here, they show an efficient way to combine two low-cost materials, cellulose and zinc oxide (ZnO), to achieve novel functional and “green” materials via paper-making processes. While cellulose is the most abundant and cost-effective organic material extractable from nature. ZnO is cheap and known of its photocatalytic, antibacterial, and UV absorption properties. ZnO nanowires are grown directly onto cellulose fibers in water solutions and then dewatered in a process mimicking existing steps of large-scale papermaking technology. The ZnO NW paper exhibits excellent photo-conducting properties under simulated sunlight with good ON/OFF switching and long-term stability (90 minutes). It also acts as an efficient photocatalyst for hydrogen peroxide (H2O2) generation (5.7 × 10−9 m s−1) with an envision the possibility of using it in buildings to enable large surfaces to spontaneously produce H2O2 at its outer surface. Such technology promise for fast degradation of microorganisms to suppress the spreading of diseases.

sted, utgiver, år, opplag, sider
John Wiley & Sons, 2023. Vol. 7, nr 9, artikkel-id 2300034
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-66369DOI: 10.1002/gch2.202300034OAI: oai:DiVA.org:ri-66369DiVA, id: diva2:1794452
Merknad

The authors acknowledge The Knut and Alice Wallenberg Foundation (Wallenberg Wood Science Center, H2O2 project) and VINNOVA (Digital Cellulose Center), Vetenskaprådet (2016-05990), and the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU No. 2009-00971). N.H.A. would like to thank the PRINTSHOP project funded by the ÅForsk Foundation under project number 17-433.

Tilgjengelig fra: 2023-09-05 Laget: 2023-09-05 Sist oppdatert: 2024-06-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Ul Hassan Alvi, Naveed

Søk i DiVA

Av forfatter/redaktør
Ul Hassan Alvi, Naveed
Av organisasjonen
I samme tidsskrift
Global Challenges

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 34 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.44.0